Home
Search results “What are the components of data mining”
Introduction to data mining and architecture  in hindi
 
09:51
Sample Notes : https://drive.google.com/file/d/19xmuQO1cprKqqbIVKcd7_-hILxF9yfx6/view?usp=sharing for notes fill the form : https://goo.gl/forms/C7EcSPmfOGleVOOA3 For full course:https://goo.gl/bYbuZ2 More videos coming soon so Subscribe karke rakho  :  https://goo.gl/85HQGm for full notes   please fill the form for notes :https://goo.gl/forms/MJD1mAOaTzyag64P2 For full hand made  notes of data warehouse and data mining  its only 200rs payment options is PAYTM :7038604912 once we get payment notification we will mail you the notes on your email id contact us at :[email protected] For full course :https://goo.gl/Y1UcLd Topic wise: Introduction to Datawarehouse:https://goo.gl/7BnSFo Meta data in 5 mins :https://goo.gl/7aectS Datamart in datawarehouse :https://goo.gl/rzE7SJ Architecture of datawarehouse:https://goo.gl/DngTu7 how to draw star schema slowflake schema and fact constelation:https://goo.gl/94HsDT what is Olap operation :https://goo.gl/RYQEuN OLAP vs OLTP:https://goo.gl/hYL2kd decision tree with solved example:https://goo.gl/nNTFJ3 K mean clustering algorithm:https://goo.gl/9gGGu5 Introduction to data mining and architecture:https://goo.gl/8dUADv Naive bayes classifier:https://goo.gl/jVUNyc Apriori Algorithm:https://goo.gl/eY6Kbx Agglomerative clustering algorithmn:https://goo.gl/8ktMss KDD in data mining :https://goo.gl/K2vvuJ ETL process:https://goo.gl/bKnac9 FP TREE Algorithm:https://goo.gl/W24ZRF Decision tree:https://goo.gl/o3xHgo more videos coming soon so channel ko subscribe karke rakho
Views: 144514 Last moment tuitions
Data warehouse Components – 3 Layer Architecture of Data Warehouse with Diagram(Hindi)
 
12:07
Data warehouse Components – 3 Layer Architecture of Data Warehouse with Diagram(Hindi) Data Warehouse and Data Mining Lectures in Hindi
Principal Components Analysis - Georgia Tech - Machine Learning
 
04:23
Watch on Udacity: https://www.udacity.com/course/viewer#!/c-ud262/l-649069103/m-661438544 Check out the full Advanced Operating Systems course for free at: https://www.udacity.com/course/ud262 Georgia Tech online Master's program: https://www.udacity.com/georgia-tech
Views: 243514 Udacity
Introduction to Datawarehouse in hindi
 
10:36
Sample Notes : https://drive.google.com/file/d/19xmuQO1cprKqqbIVKcd7_-hILxF9yfx6/view?usp=sharing for notes fill the form : https://goo.gl/forms/C7EcSPmfOGleVOOA3 For full course:https://goo.gl/bYbuZ2 More videos coming soon so Subscribe karke rakho  :  https://goo.gl/85HQGm for full notes   please fill the form for notes :https://goo.gl/forms/MJD1mAOaTzyag64P2 For full hand made  notes of data warehouse and data mining  its only 200 rs payment options is PAYTM :7038604912 once we get payment notification we will mail you the notes on your email id contact us at :[email protected] For full course :https://goo.gl/Y1UcLd Topic wise: Introduction to Datawarehouse:https://goo.gl/7BnSFo Meta data in 5 mins :https://goo.gl/7aectS Datamart in datawarehouse :https://goo.gl/rzE7SJ Architecture of datawarehouse:https://goo.gl/DngTu7 how to draw star schema slowflake schema and fact constelation:https://goo.gl/94HsDT what is Olap operation :https://goo.gl/RYQEuN OLAP vs OLTP:https://goo.gl/hYL2kd decision tree with solved example:https://goo.gl/nNTFJ3 K mean clustering algorithm:https://goo.gl/9gGGu5 Introduction to data mining and architecture:https://goo.gl/8dUADv Naive bayes classifier:https://goo.gl/jVUNyc Apriori Algorithm:https://goo.gl/eY6Kbx Agglomerative clustering algorithmn:https://goo.gl/8ktMss KDD in data mining :https://goo.gl/K2vvuJ ETL process:https://goo.gl/bKnac9 FP TREE Algorithm:https://goo.gl/W24ZRF Decision tree:https://goo.gl/o3xHgo more videos coming soon so channel ko subscribe karke rakho
Views: 210403 Last moment tuitions
Principles of Data Mining
 
01:21
Learn more at: http://www.springer.com/978-1-4471-7306-9. Presents the principal techniques of data mining with particular emphasis on explaining and motivating the techniques used. Focuses on understanding of the basic algorithms and awareness of their strengths and weaknesses. Does not require a strong mathematical or statistical background. Main Discipline: Computer Science
Views: 169 SpringerVideos
Architecture of datawarehouse IN HINDI
 
07:18
Sample Notes : https://drive.google.com/file/d/19xmuQO1cprKqqbIVKcd7_-hILxF9yfx6/view?usp=sharing for notes fill the form : https://goo.gl/forms/C7EcSPmfOGleVOOA3 For full course:https://goo.gl/bYbuZ2 More videos coming soon so Subscribe karke rakho  :  https://goo.gl/85HQGm for full notes   please fill the form for notes :https://goo.gl/forms/MJD1mAOaTzyag64P2 For full hand made  notes of data warehouse and data mining  its only 200 rs payment options is PAYTM :7038604912 once we get payment notification we will mail you the notes on your email id contact us at :[email protected] For full course :https://goo.gl/Y1UcLd Topic wise: Introduction to Datawarehouse:https://goo.gl/7BnSFo Meta data in 5 mins :https://goo.gl/7aectS Datamart in datawarehouse :https://goo.gl/rzE7SJ Architecture of datawarehouse:https://goo.gl/DngTu7 how to draw star schema slowflake schema and fact constelation:https://goo.gl/94HsDT what is Olap operation :https://goo.gl/RYQEuN OLAP vs OLTP:https://goo.gl/hYL2kd decision tree with solved example:https://goo.gl/nNTFJ3 K mean clustering algorithm:https://goo.gl/9gGGu5 Introduction to data mining and architecture:https://goo.gl/8dUADv Naive bayes classifier:https://goo.gl/jVUNyc Apriori Algorithm:https://goo.gl/eY6Kbx Agglomerative clustering algorithmn:https://goo.gl/8ktMss KDD in data mining :https://goo.gl/K2vvuJ ETL process:https://goo.gl/bKnac9 FP TREE Algorithm:https://goo.gl/W24ZRF Decision tree:https://goo.gl/o3xHgo more videos coming soon so channel ko subscribe karke rakho
Views: 106052 Last moment tuitions
Machine Learning as a Component in a Data Mining Process
 
03:37
I will use the CRISP-DM process model for data mining, as our initial network, which will then be expanded with each new book.
Views: 2785 MachineLearningGod
INTRODUCTION TO DATA MINING IN HINDI
 
15:39
Buy Software engineering books(affiliate): Software Engineering: A Practitioner's Approach by McGraw Hill Education https://amzn.to/2whY4Ke Software Engineering: A Practitioner's Approach by McGraw Hill Education https://amzn.to/2wfEONg Software Engineering: A Practitioner's Approach (India) by McGraw-Hill Higher Education https://amzn.to/2PHiLqY Software Engineering by Pearson Education https://amzn.to/2wi2v7T Software Engineering: Principles and Practices by Oxford https://amzn.to/2PHiUL2 ------------------------------- find relevant notes at-https://viden.io/
Views: 99998 LearnEveryone
Difference between Classification and Regression - Georgia Tech - Machine Learning
 
03:29
Watch on Udacity: https://www.udacity.com/course/viewer#!/c-ud262/l-313488098/m-674518790 Check out the full Advanced Operating Systems course for free at: https://www.udacity.com/course/ud262 Georgia Tech online Master's program: https://www.udacity.com/georgia-tech
Views: 63381 Udacity
StatQuest: Principal Component Analysis (PCA), Step-by-Step
 
21:58
Principal Component Analysis, is one of the most useful data analysis and machine learning methods out there. It can be used to identify patterns in highly complex datasets and it can tell you what variables in your data are the most important. Lastly, it can tell you how accurate your new understanding of the data actually is. In this video, I go one step at a time through PCA, and the method used to solve it, Singular Value Decomposition. I take it nice and slowly so that the simplicity of the method is revealed and clearly explained. If you are interested in doing PCA in R see: https://youtu.be/0Jp4gsfOLMs If you'd like to support StatQuest, please consider buying one or two of my songs (or go large and get a whole album!) https://joshuastarmer.bandcamp.com/
Principal Component Analysis (PCA)
 
22:56
This Lecture Describes Principal Component Analysis (PCA) with the help of an easy example.
Views: 97472 Saurabh Singh
Data Mining   KDD Process
 
03:08
KDD - knowledge discovery in Database. short introduction on Data cleaning,Data integration, Data selection,Data mining,pattern evaluation and knowledge representation.
2 - Data warehouse Architecture  Overview
 
05:38
A quick video to understand standard Datawarehouse architecture. It consists of following layers 1. Data Source layer 2. ETL 3. Staging Area 4. Datawarehouse - Metadata, Summary and Raw Data 5. OLAP, Reporting and Data Mining Data warehouse is populated from multiple sources for an organisation. All these source system comes under Data Source layer. Some of the source systems are listed below: 1. Operations Systems -- such as Sales, HR, Inventory relational database. 2. ERP (SAP) and CRM (SalesForce.com) Systems. 3. Web server logs and Internal market research data. 4. Third-party data - such as census data, demographics data, or survey data. ETL Tools: Talend Open Studio, Jaspersoft ETL, Ab initio, Informatica, Datastage, Clover ETL, Pentaho ETL, Kettle For more details visit http://www.vikramtakkar.com/2015/09/data-warehouse-architecture-overview.html Datawarehouse Playlist: https://www.youtube.com/playlist?list=PLJ4bGndMaa8FV7nrvKXeHCLRMmIXVCyOG
Views: 79098 Vikram Takkar
Data Mining Software Memory Requirements in SPM
 
11:20
www.salford-systems.com data mining software memory requirements in the SPM Salford Predictive Modeler software suite. The SPM software suite components include CART, MARS, TreeNet and RandomForests.
Views: 189 Salford Systems
StatQuest: Principal Component Analysis (PCA) clearly explained (2015)
 
20:16
NOTE: On April 2, 2018 I updated this video with a new video that goes, step-by-step, through PCA and how it is performed. Check it out! https://youtu.be/FgakZw6K1QQ RNA-seq results often contain a PCA or MDS plot. This StatQuest explains how these graphs are generated, how to interpret them, and how to determine if the plot is informative or not. I've got example code (in R) for how to do PCA and extract the most important information from it on the StatQuest website: https://statquest.org/2015/08/13/pca-clearly-explained/ If you'd like to support StatQuest, please consider buying one or two of my songs (or go large and get a whole album!) https://joshuastarmer.bandcamp.com/
Data Warehouse Tutorial For Beginners | Data Warehouse Concepts | Data Warehousing | Edureka
 
01:38:50
***** Data Warehousing & BI Training: https://www.edureka.co/data-warehousing-and-bi ***** This Data Warehouse Tutorial For Beginners will give you an introduction to data warehousing and business intelligence. You will be able to understand basic data warehouse concepts with examples. The following topics have been covered in this tutorial: 1. What Is The Need For BI? 2. What Is Data Warehousing? 3. Key Terminologies Related To DWH Architecture: a. OLTP Vs OLAP b. ETL c. Data Mart d. Metadata 4. DWH Architecture 5. Demo: Creating A DWH - - - - - - - - - - - - - - Check our complete Data Warehousing & Business Intelligence playlist here: https://goo.gl/DZEuZt. #DataWarehousing #DataWarehouseTutorial #DataWarehouseTraining Subscribe to our channel to get video updates. Hit the subscribe button above. - - - - - - - - - - - - - - How it Works? 1. This is a 5 Week Instructor led Online Course, 25 hours of assignment and 10 hours of project work 2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course. 3. At the end of the training you will have to undergo a 2-hour LIVE Practical Exam based on which we will provide you a Grade and a Verifiable Certificate! - - - - - - - - - - - - - - About the Course: Edureka's Data Warehousing and Business Intelligence Course, will introduce participants to create and work with leading ETL & BI tools like: 1. Talend 5.x to create, execute, monitor and schedule ETL processes. It will cover concepts around Data Replication, Migration and Integration Operations 2. Tableau 9.x for data visualization to see how easy and reliable data visualization can become for representation with dashboards 3. Data Modeling tool ERwin r9 to create a Data Warehouse or Data Mart - - - - - - - - - - - - - - Who should go for this course? The following professionals can go for this course: 1. Data warehousing enthusiasts 2. Analytics Managers 3. Data Modelers 4. ETL Developers and BI Developers - - - - - - - - - - - - - - Why learn Data Warehousing and Business Intelligence? All the successful companies have been investing large sums of money in business intelligence and data warehousing tools and technologies. Up-to-date, accurate and integrated information about their supply chain, products and customers are critical for their success. With the advent of Mobile, Social and Cloud platform, today's business intelligence tools have evolved and can be categorized into five areas, including databases, extraction transformation and load (ETL) tools, data quality tools, reporting tools and statistical analysis tools. This course will provide a strong foundation around Data Warehousing and Business Intelligence fundamentals and sophisticated tools like Talend, Tableau and ERwin. - - - - - - - - - - - - - - Please write back to us at [email protected] or call us at +91 90660 20866 for more information. Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka - - - - - - - - - - - - - - Customer Review: Kanishk says, "Underwent Mastering in DW-BI Course. The training material and trainer are up to the mark to get yourself acquainted to the new technology. Very helpful support service from Edureka."
Views: 166344 edureka!
R tutorial: What is text mining?
 
03:59
Learn more about text mining: https://www.datacamp.com/courses/intro-to-text-mining-bag-of-words Hi, I'm Ted. I'm the instructor for this intro text mining course. Let's kick things off by defining text mining and quickly covering two text mining approaches. Academic text mining definitions are long, but I prefer a more practical approach. So text mining is simply the process of distilling actionable insights from text. Here we have a satellite image of San Diego overlaid with social media pictures and traffic information for the roads. It is simply too much information to help you navigate around town. This is like a bunch of text that you couldn’t possibly read and organize quickly, like a million tweets or the entire works of Shakespeare. You’re drinking from a firehose! So in this example if you need directions to get around San Diego, you need to reduce the information in the map. Text mining works in the same way. You can text mine a bunch of tweets or of all of Shakespeare to reduce the information just like this map. Reducing the information helps you navigate and draw out the important features. This is a text mining workflow. After defining your problem statement you transition from an unorganized state to an organized state, finally reaching an insight. In chapter 4, you'll use this in a case study comparing google and amazon. The text mining workflow can be broken up into 6 distinct components. Each step is important and helps to ensure you have a smooth transition from an unorganized state to an organized state. This helps you stay organized and increases your chances of a meaningful output. The first step involves problem definition. This lays the foundation for your text mining project. Next is defining the text you will use as your data. As with any analytical project it is important to understand the medium and data integrity because these can effect outcomes. Next you organize the text, maybe by author or chronologically. Step 4 is feature extraction. This can be calculating sentiment or in our case extracting word tokens into various matrices. Step 5 is to perform some analysis. This course will help show you some basic analytical methods that can be applied to text. Lastly, step 6 is the one in which you hopefully answer your problem questions, reach an insight or conclusion, or in the case of predictive modeling produce an output. Now let’s learn about two approaches to text mining. The first is semantic parsing based on word syntax. In semantic parsing you care about word type and order. This method creates a lot of features to study. For example a single word can be tagged as part of a sentence, then a noun and also a proper noun or named entity. So that single word has three features associated with it. This effect makes semantic parsing "feature rich". To do the tagging, semantic parsing follows a tree structure to continually break up the text. In contrast, the bag of words method doesn’t care about word type or order. Here, words are just attributes of the document. In this example we parse the sentence "Steph Curry missed a tough shot". In the semantic example you see how words are broken down from the sentence, to noun and verb phrases and ultimately into unique attributes. Bag of words treats each term as just a single token in the sentence no matter the type or order. For this introductory course, we’ll focus on bag of words, but will cover more advanced methods in later courses! Let’s get a quick taste of text mining!
Views: 20258 DataCamp
Data Warehousing - An Overview
 
08:53
This video aims to give an overview of data warehousing. It does not delve into the detail - that is for later videos. Here, you will meet Bill Inmon and Ralph Kimball who created the concept and the commercialised it respectively. You then get a quick tour of the basic concepts used in data warehousing.
Views: 314098 Andy Wicks
Principal component analysis
 
07:37
Currell: Scientific Data Analysis. Minitab analysis for Figs 9.6 and 9.7 http://ukcatalogue.oup.com/product/9780198712541.do © Oxford University Press
Data Mining Lecture 15 Part 2
 
37:57
Regression : SVD + PCA
Views: 68 Utah Data
Datamart in datawarehouse in hindi
 
06:14
Sample Notes : https://drive.google.com/file/d/19xmuQO1cprKqqbIVKcd7_-hILxF9yfx6/view?usp=sharing for notes fill the form : https://goo.gl/forms/C7EcSPmfOGleVOOA3 For full course:https://goo.gl/bYbuZ2 More videos coming soon so Subscribe karke rakho  :  https://goo.gl/85HQGm for full notes   please fill the form for notes :https://goo.gl/forms/MJD1mAOaTzyag64P2 For full hand made  notes of data warehouse and data mining  its only 200 rs payment options is PAYTM :7038604912 once we get payment notification we will mail you the notes on your email id contact us at :[email protected] For full course :https://goo.gl/Y1UcLd Topic wise: Introduction to Datawarehouse:https://goo.gl/7BnSFo Meta data in 5 mins :https://goo.gl/7aectS Datamart in datawarehouse :https://goo.gl/rzE7SJ Architecture of datawarehouse:https://goo.gl/DngTu7 how to draw star schema slowflake schema and fact constelation:https://goo.gl/94HsDT what is Olap operation :https://goo.gl/RYQEuN OLAP vs OLTP:https://goo.gl/hYL2kd decision tree with solved example:https://goo.gl/nNTFJ3 K mean clustering algorithm:https://goo.gl/9gGGu5 Introduction to data mining and architecture:https://goo.gl/8dUADv Naive bayes classifier:https://goo.gl/jVUNyc Apriori Algorithm:https://goo.gl/eY6Kbx Agglomerative clustering algorithmn:https://goo.gl/8ktMss KDD in data mining :https://goo.gl/K2vvuJ ETL process:https://goo.gl/bKnac9 FP TREE Algorithm:https://goo.gl/W24ZRF Decision tree:https://goo.gl/o3xHgo more videos coming soon so channel ko subscribe karke rakho
Views: 70247 Last moment tuitions
Chapter 16: Time Series Analysis (1/4)
 
10:01
Time Series Analysis: Introduction to the model; Seasonal Adjustment Method Part 1 of 4
Views: 181150 Simcha Pollack
Data Mining with Weka (1.5: Using a filter )
 
07:34
Data Mining with Weka: online course from the University of Waikato Class 1 - Lesson 5: Using a filter http://weka.waikato.ac.nz/ Slides (PDF): http://goo.gl/IGzlrn https://twitter.com/WekaMOOC http://wekamooc.blogspot.co.nz/ Department of Computer Science University of Waikato New Zealand http://cs.waikato.ac.nz/
Views: 61334 WekaMOOC
1 - Introduction to Data warehouse and Data warehousing
 
05:17
Short Introduction Video to understand, What is Data warehouse and Data warehousing? How it is different from Database? It also talks about properties of Data warehouse which are Subject Oriented, Integrated, Time Variant, Non Volatile ETL Tools: Talend Open Studio, Jaspersoft ETL, Ab initio, Informatica, Datastage, Clover ETL, Pentaho ETL, Kettle. #datawarehouse #ETL #DWH Business Intelligence tools: Oracle BI, Microsoft BI suite, Tableau, Qlik, Jaspersoft BI, Pentabo BI, Miscrostrategy, Tibco For more details visit: http://www.vikramtakkar.com/2015/08/what-is-datawarehouse-and.html Datawarehouse Playlist: https://www.youtube.com/playlist?list=PLJ4bGndMaa8FV7nrvKXeHCLRMmIXVCyOG
Views: 97594 Vikram Takkar
Meta data  in 5 mins hindi
 
04:57
Sample Notes : https://drive.google.com/file/d/19xmuQO1cprKqqbIVKcd7_-hILxF9yfx6/view?usp=sharing for notes fill the form : https://goo.gl/forms/C7EcSPmfOGleVOOA3 For full course:https://goo.gl/bYbuZ2 More videos coming soon so Subscribe karke rakho  :  https://goo.gl/85HQGm for full notes   please fill the form for notes :https://goo.gl/forms/MJD1mAOaTzyag64P2 For full hand made  notes of data warehouse and data mining  its only 200 rs payment options is PAYTM :7038604912 once we get payment notification we will mail you the notes on your email id contact us at :[email protected] For full course :https://goo.gl/Y1UcLd Topic wise: Introduction to Datawarehouse:https://goo.gl/7BnSFo Meta data in 5 mins :https://goo.gl/7aectS Datamart in datawarehouse :https://goo.gl/rzE7SJ Architecture of datawarehouse:https://goo.gl/DngTu7 how to draw star schema slowflake schema and fact constelation:https://goo.gl/94HsDT what is Olap operation :https://goo.gl/RYQEuN OLAP vs OLTP:https://goo.gl/hYL2kd decision tree with solved example:https://goo.gl/nNTFJ3 K mean clustering algorithm:https://goo.gl/9gGGu5 Introduction to data mining and architecture:https://goo.gl/8dUADv Naive bayes classifier:https://goo.gl/jVUNyc Apriori Algorithm:https://goo.gl/eY6Kbx Agglomerative clustering algorithmn:https://goo.gl/8ktMss KDD in data mining :https://goo.gl/K2vvuJ ETL process:https://goo.gl/bKnac9 FP TREE Algorithm:https://goo.gl/W24ZRF Decision tree:https://goo.gl/o3xHgo more videos coming soon so channel ko subscribe karke rakho
Views: 85594 Last moment tuitions
Dimensionality Reduction: Principal Components Analysis, Part 1
 
13:56
Data Science for Biologists Dimensionality Reduction: Principal Components Analysis Part 1 Course Website: data4bio.com Instructors: Nathan Kutz: faculty.washington.edu/kutz Bing Brunton: faculty.washington.edu/bbrunton Steve Brunton: faculty.washington.edu/sbrunton
Views: 59443 Data4Bio
What is Principal Component Analysis (PCA)?
 
14:58
This video explains what is Principal Component Analysis (PCA) and how it works. Then an example is shown in XLSTAT statistical software.
Views: 265684 XLSTAT
Dimensionality Reduction - The Math of Intelligence #5
 
10:49
Most of the datasets you'll find will have more than 3 dimensions. How are you supposed to understand visualize n-dimensional data? Enter dimensionality reduction techniques. We'll go over the the math behind the most popular such technique called Principal Component Analysis. Code for this video: https://github.com/llSourcell/Dimensionality_Reduction Ong's Winning Code: https://github.com/jrios6/Math-of-Intelligence/tree/master/4-Self-Organizing-Maps Hammad's Runner up Code: https://github.com/hammadshaikhha/Math-of-Machine-Learning-Course-by-Siraj/tree/master/Self%20Organizing%20Maps%20for%20Data%20Visualization Please Subscribe! And like. And comment. That's what keeps me going. I used a screengrab from 3blue1brown's awesome videos: https://www.youtube.com/channel/UCYO_jab_esuFRV4b17AJtAw More learning resources: https://plot.ly/ipython-notebooks/principal-component-analysis/ https://www.youtube.com/watch?v=lrHboFMio7g https://www.dezyre.com/data-science-in-python-tutorial/principal-component-analysis-tutorial https://georgemdallas.wordpress.com/2013/10/30/principal-component-analysis-4-dummies-eigenvectors-eigenvalues-and-dimension-reduction/ http://setosa.io/ev/principal-component-analysis/ http://sebastianraschka.com/Articles/2015_pca_in_3_steps.html https://algobeans.com/2016/06/15/principal-component-analysis-tutorial/ Join us in the Wizards Slack channel: http://wizards.herokuapp.com/ And please support me on Patreon: https://www.patreon.com/user?u=3191693 Follow me: Twitter: https://twitter.com/sirajraval Facebook: https://www.facebook.com/sirajology Instagram: https://www.instagram.com/sirajraval/ Instagram: https://www.instagram.com/sirajraval/ Signup for my newsletter for exciting updates in the field of AI: https://goo.gl/FZzJ5w
Views: 56974 Siraj Raval
Modular Mining "System Components"
 
00:41
https://abbottanimation.com
Views: 89 Abbott Animation
Data mining robots: using Seaborn and pandas with the Robot Operating System (Catherine Holloway)
 
11:51
PyCon Canada 2015: Talk Description: The Robot Operating System (ROS) is an open-source project that facilitates communication between robotic components such as motors, cameras, and other sensors, and computational nodes such as movement commands and pose estimation. However, acquiring and analysing data from ROS can be a little tricky. In this talk, I will go over a few examples of loading data from saved files and live ROS processes using Python with the pandas and Seaborn libraries.
Views: 2158 PyCon Canada
Outlier Analysis - Part 1
 
06:54
This video discusses about outliers and its possible cause.
Views: 12805 Gourab Nath
PCA 4: principal components = eigenvectors
 
06:58
Full lecture: http://bit.ly/PCA-alg We can find the direction of the greatest variance in our data from the covariance matrix. It is the vector that does not rotate when we multiply it by the covariance matrix. Such vectors are called eigenvectors, and have corresponding eigenvalues. Eigenvectors that have the largest eigenvalues will be the principal components (new dimensions of our data).
Views: 65947 Victor Lavrenko
Business Intelligence Solution Components Overview
 
07:50
http://ytwizard.com/r/qN5xsS http://ytwizard.com/r/qN5xsS SQL Server Analysis Services - SSAS, Data Mining & Analytics SQL Server, SSAS, MDX, DAX, Data Warehouse, Data Mining, Multi Dimensional Data Modeling, Tabular Model, SSRS, Power BI
Views: 12 Beauty Supply
Rattle for Data Mining - Using R without programming (CRAN)
 
17:28
www.learnanalytics.in demostrates use of an free and open source platform to build sophisticated predictive models. We demonstrate using R package Rattle to do data analysis without writing a line of r code. We cover hypothesis testing, descriptive statistics, linear and logistic regression with a flavor of machine learning (Random Forest, SVM etc.). Also using graphs such as ROC curves and Area under curves (AUC) to compare various models. To download the dataset and follow on your own follow http://www.learnanalytics.in/datasets/Credit_Scoring.zip
Views: 41493 Learn Analytics
K mean clustering algorithm with solve example
 
12:13
Sample Notes : https://drive.google.com/file/d/19xmuQO1cprKqqbIVKcd7_-hILxF9yfx6/view?usp=sharing for notes fill the form : https://goo.gl/forms/C7EcSPmfOGleVOOA3 For full course:https://goo.gl/bYbuZ2 More videos coming soon so Subscribe karke rakho  :  https://goo.gl/85HQGm for full notes   please fill the form for notes :https://goo.gl/forms/MJD1mAOaTzyag64P2 For full hand made  notes of data warehouse and data mining  its only 200 rs payment options is PAYTM :7038604912 once we get payment notification we will mail you the notes on your email id contact us at :[email protected] For full course :https://goo.gl/Y1UcLd Topic wise: Introduction to Datawarehouse:https://goo.gl/7BnSFo Meta data in 5 mins :https://goo.gl/7aectS Datamart in datawarehouse :https://goo.gl/rzE7SJ Architecture of datawarehouse:https://goo.gl/DngTu7 how to draw star schema slowflake schema and fact constelation:https://goo.gl/94HsDT what is Olap operation :https://goo.gl/RYQEuN OLAP vs OLTP:https://goo.gl/hYL2kd decision tree with solved example:https://goo.gl/nNTFJ3 K mean clustering algorithm:https://goo.gl/9gGGu5 Introduction to data mining and architecture:https://goo.gl/8dUADv Naive bayes classifier:https://goo.gl/jVUNyc Apriori Algorithm:https://goo.gl/eY6Kbx Agglomerative clustering algorithmn:https://goo.gl/8ktMss KDD in data mining :https://goo.gl/K2vvuJ ETL process:https://goo.gl/bKnac9 FP TREE Algorithm:https://goo.gl/W24ZRF Decision tree:https://goo.gl/o3xHgo more videos coming soon so channel ko subscribe karke rakho
Views: 235012 Last moment tuitions
[Webinar] Transform your data into insights
 
35:03
In this webinar, discover the main components of the Analytics Suite, its applications, and its range of features: dashboards, reports, data mining, exports, data management, and more. Why do some of the world’s largest brands prefer the Analytics Suite? What makes our solution different from others? Want to know more about AT Internet? Visit http://www.atinternet.com/en Be sure to check out our blog: http://blog.atinternet.com/en Follow us to stay updated on the latest trends in digital analytics: -Facebook : https://www.facebook.com/atinternet.analytics/ -Twitter : https://twitter.com/AT_Internet -LinkedIn : https://www.linkedin.com/company/at-internet -SlideShare : http://fr.slideshare.net/AT-Internet -Xing : https://www.xing.com/companies/atinternetgmbh -Google + : https://plus.google.com/+ATinternet
Views: 183 AT Internet
Cryptocurrency Mining Hardware Guide - Ethereum + Siacoin
 
08:03
NCIX Tech Tips viewers get 50% off Synergy! https://symless.com/synergy/ncix1 Cryptocoin mining is back in the spotlight - but before you jump into building your own mining rig, let us give you some advice. Buy PC components at NCIX: Canada: http://www.ncix.com/computer-hardware/?a_aid=c6bf19fe&a_cid=0c357c74 US: http://www.ncixus.com/computer-hardware/ See news sources + discuss on our Forums: http://forums.ncix.com/&a_aid=c6bf19fe&a_cid=0c357c74 Get Official NCIX Tech Tips T-shirts here! http://www.ncix.com/techtips?a_aid=c6bf19fe&a_cid=0c357c74 Social Media: Instagram(NCIX Tech Tips): https://instagram.com/ncixtechtips Twitter (NCIX Tech Tips): https://twitter.com/ncixtechtips ​Twitter (Official NCIX): https://twitter.com/ncixdotcom/ Instagram(Official NCIX): https://instagram.com/ncixdotcom/ Facebook: https://facebook.com/ncixdotcom/ Twitch: https://www.twitch.tv/ncixofficial Episode Credits: Host: Riley Murdock Writer: Anthony Chow Editor: Barret Murdock
Views: 419575 NCIX Tech Tips
Data Mining
 
03:55
This video has some following points: Why preprocess the data? Descriptive data summarization Data cleaning Data integration and transformation Data reduction Discretization and concept hierarchy generation
Views: 19 Prateek Kumar
Explanation of Principal Components Analysis for Hong Kong IT Job Advertisement Data Mining Report
 
05:18
Explanation what Principal Components Analysis (PCA) does, and show you how to read the Hong Kong IT Job Skill Cube. http://itjobanalysis.data-hk.com/
Views: 240 Cyrus Wong
Lecture 13
 
30:48
Brief discussion on various dimension reduction techniques Domain Knowledge Data Exploration Techniques Data Conversion Techniques Automated reduction Techniques Data Mining Techniques
Relational Database Concepts
 
05:25
Basic Concepts on how relational databases work. Explains the concepts of tables, key IDs, and relations at an introductory level. For more info on Crow's Feet Notation: http://prescottcomputerguy.com/tmp/crows-foot.png
Views: 529202 Prescott Computer Guy
MATHS & STATISICS | Data mining tutorial from John Elder (4)
 
04:17
Top tips for data mining success! Watch John Elder present this short tutorial on how to get ahead in data mining. This is extracted from training material produced by Elder Research, Inc. For more information about statistical analysis and data mining, check out the brand new reference book from Elsevier: The Handbook of Statistical Analysis and Data Mining Applications (www.elsevierdirect.com/datamining).
Views: 2752 Elsevier Books
A Data Mining Framework for Valuing Large Portfolios of Variable Annuities
 
02:19
A Data Mining Framework for Valuing Large Portfolios of Variable Annuities Guojun Gan (Department of Mathematics, University of Connecticut) Jimmy Huang (York University) A variable annuity is a tax-deferred retirement vehicle created to address concerns that many people have about outliving their assets. In the past decade, the rapid growth of variable annuities has posed great challenges to insurance companies especially when it comes to valuing the complex guarantees embedded in these products. In this paper, we propose a data mining framework to address the computational issue associated with the valuation of large portfolios of variable annuity contracts. The data mining framework consists of two major components: a data clustering algorithm which is used to select representative variable annuity contracts, and a regression model which is used to predict quantities of interest for the whole portfolio based on the representative contracts. A series of numerical experiments are conducted on a portfolio of synthetic variable annuity contracts to demonstrate the performance of our proposed data mining framework in terms of accuracy and speed. The experimental results show that our proposed framework is able to produce accurate estimates of various quantities of interest and can reduce the runtime significantly compared to the state-of-the-art approaches. More on http://www.kdd.org/kdd2017/
Views: 107 KDD2017 video