Home
Search results “Web mining and text mining software”
INTRODUCTION TO TEXT MINING IN HINDI
 
10:34
find relevant notes at-https://viden.io/
Views: 8107 LearnEveryone
Web Mining - Tutorial
 
11:02
Web Mining Web Mining is the use of Data mining techniques to automatically discover and extract information from World Wide Web. There are 3 areas of web Mining Web content Mining. Web usage Mining Web structure Mining. Web content Mining Web content Mining is the process of extracting useful information from content of web document.it may consists of text images,audio,video or structured record such as list & tables. screen scaper,Mozenda,Automation Anywhere,Web content Extractor, Web info extractor are the tools used to extract essential information that one needs. Web Usage Mining Web usage Mining is the process of identifying browsing patterns by analysing the users Navigational behaviour. Techniques for discovery & pattern analysis are two types. They are Pattern Analysis Tool. Pattern Discovery Tool. Data pre processing,Path Analysis,Grouping,filtering,Statistical Analysis, Association Rules,Clustering,Sequential Pattterns,classification are the Analysis done to analyse the patterns. Web structure Mining Web structure Mining is a tool, used to extract patterns from hyperlinks in the web. Web structure Mining is also called link Mining. HITS & PAGE RANK Algorithm are the Popular Web structure Mining Algorithm. By applying Web content mining,web structure Mining & Web usage Mining knowledge is extracted from web data.
Introduction to Data Mining and Text Mining #1
 
01:00:14
Introduction to Data Mining and Text Mining - Part 1 Part 1 : Introduction - What is Data Mining ? - Text Mining -- Social Mind Extraction by Kanda Tiwatthanont (Phawattanakul)
Views: 331 Kanda
Intro into Text Mining and Analytics - Chapter 1
 
06:00
Text Mining and Analytics Intro into Text Mining and Analytics - Chapter 1 This video tutorials cover major techniques for mining and analyzing text data to discover interesting patterns, extract useful knowledge, and support decision making, with an emphasis on statistical approaches that can be generally applied to arbitrary text data in any natural language with no or minimum human effort. Detailed analysis of text data requires understanding of natural language text, which is known to be a difficult task for computers. However, a number of statistical approaches have been shown to work well for the "shallow" but robust analysis of text data for pattern finding and knowledge discovery. You will learn the basic concepts, principles, and major algorithms in text mining and their potential applications. analytics | analytics tools | analytics software | data analysis programs | data mining tools | data mining | text analytics | strucutred data | unstructured data |text mining | what is text mining | text mining techniques More Articles, Scripts and How-To Papers on http://www.aodba.com
Views: 360 AO DBA
Data Mining and Text Mining with John Elder
 
05:35
Analytics 2014 Conference Keynote Conference John Elder of Elder Research explains the top three challenges of data mining and text mining, and how to solve them. Learn more about Analytics 2014 at http://www.sas.com/analyticsseries/us/
Views: 1161 SAS Software
Topic Detection Using Text Mining Project
 
05:32
Get this project at http://nevonprojects.com/topic-detection-using-keyword-clustering/ System allows for automated topic detection using keyword clustering and analysis
Views: 3516 Nevon Projects
Text Analytics and Text Mining Explained by OdinText
 
04:30
Text Analytics Explained. Anderson Analytictics, developers of Next Generation Text Analytics software platform OdinText explain Text Analytics and the power of text mining, as well as the difference between first generation text analytics software from IBM SPSS, SAS Text, Attensity and Clarabridge compared to the OdinText Next Generation Text Analytics approach to text and data mining. http://www.OdinText.com
Views: 26421 OdinText
Data Mining and Text Analytics - Quranic Arabic Corpus
 
05:09
Presentation on the Quranic Arabic Corpus. by Ismail Teladia and Abdullah Alazwari.
Views: 919 Ismail Teladia
NLP(Text Mining)
 
54:05
NLP
Views: 146 Amarnadh paritala
Week 7: Text Mining Intro
 
14:37
Carolyn Rose introduces text mining for week 7 of DALMOOC.
What is TEXT MINING? What does TEXT MINING mean? TEXT MINING meaning, definition & explanation
 
03:33
What is TEXT MINING? What does TEXT MINING mean? TEXT MINING meaning - TEXT MINING definition - TEXT MINING explanation. Source: Wikipedia.org article, adapted under https://creativecommons.org/licenses/by-sa/3.0/ license. Text mining, also referred to as text data mining, roughly equivalent to text analytics, is the process of deriving high-quality information from text. High-quality information is typically derived through the devising of patterns and trends through means such as statistical pattern learning. Text mining usually involves the process of structuring the input text (usually parsing, along with the addition of some derived linguistic features and the removal of others, and subsequent insertion into a database), deriving patterns within the structured data, and finally evaluation and interpretation of the output. 'High quality' in text mining usually refers to some combination of relevance, novelty, and interestingness. Typical text mining tasks include text categorization, text clustering, concept/entity extraction, production of granular taxonomies, sentiment analysis, document summarization, and entity relation modeling (i.e., learning relations between named entities). Text analysis involves information retrieval, lexical analysis to study word frequency distributions, pattern recognition, tagging/annotation, information extraction, data mining techniques including link and association analysis, visualization, and predictive analytics. The overarching goal is, essentially, to turn text into data for analysis, via application of natural language processing (NLP) and analytical methods. A typical application is to scan a set of documents written in a natural language and either model the document set for predictive classification purposes or populate a database or search index with the information extracted. The term text analytics describes a set of linguistic, statistical, and machine learning techniques that model and structure the information content of textual sources for business intelligence, exploratory data analysis, research, or investigation. The term is roughly synonymous with text mining; indeed, Ronen Feldman modified a 2000 description of "text mining" in 2004 to describe "text analytics." The latter term is now used more frequently in business settings while "text mining" is used in some of the earliest application areas, dating to the 1980s, notably life-sciences research and government intelligence. The term text analytics also describes that application of text analytics to respond to business problems, whether independently or in conjunction with query and analysis of fielded, numerical data. It is a truism that 80 percent of business-relevant information originates in unstructured form, primarily text. These techniques and processes discover and present knowledge – facts, business rules, and relationships – that is otherwise locked in textual form, impenetrable to automated processing.
Views: 2209 The Audiopedia
Data Mining Lecture - - Advance Topic | Web mining | Text mining (Eng-Hindi)
 
05:13
Data mining Advance topics - Web mining - Text Mining -~-~~-~~~-~~-~- Please watch: "PL vs FOL | Artificial Intelligence | (Eng-Hindi) | #3" https://www.youtube.com/watch?v=GS3HKR6CV8E -~-~~-~~~-~~-~- Follow us on : Facebook : https://www.facebook.com/wellacademy/ Instagram : https://instagram.com/well_academy Twitter : https://twitter.com/well_academy
Views: 51517 Well Academy
misy 4390 chapter 5 on text and web mining.flv
 
24:28
lecture on text mining and web mining
Views: 2025 Kakoli Bandyopadhyay
How NLP text mining works: find knowledge hidden in unstructured data
 
01:40
Connect with us: http://www.linguamatics.com/contact What use is big data if you can't find what you're looking for? Follow: @Linguamatics https://twitter.com/Linguamatics https://www.linkedin.com/company/linguamatics https://www.facebook.com/Linguamatics https://plus.google.com/+Linguamatics https://www.youtube.com/user/Linguamatics/videos In knowledge driven industries such as the life sciences and healthcare, finding the right information quickly from huge volumes of text is crucial in supporting the best business decisions. However, around 80% of available information exists as unstructured text, and conventional keyword searches only retrieve documents, which still have to be read. This is very time consuming, unreliable, and, when important decisions rest on it, costly. Linguamatics’ text mining solution, I2E, uses Natural Language Processing to identify and extract relevant knowledge at least 10 times faster than conventional search, often uncovering insights that would otherwise remain unknown. I2E analyses the meaning of the text using powerful linguistic algorithms, enabling you to ask open questions, find the relevant facts and identify valuable connections. Going beyond simple keywords, I2E can recognise concepts and the different ways the same thing can be expressed, increasing the recall of relevant information. I2E then presents high quality results as structured, actionable knowledge, enabling fast review and analysis, and providing dramatically improved speed to insight. Our market leading software is supported by highly qualified domain experts who work with our customers to ensure successful project outcomes. Text mining for beginners: https://www.youtube.com/watch?v=40QIW9Sr6Io
Views: 15787 Linguamatics
Rapidminer 5.0 Video Tutorial #14 - Web Mining Financial Web Sites - Part 1
 
15:48
In this Rapidminer Video Tutorial I show the user how to use the web crawling and text mining operators to download 4 web pages, build a word frequency list, and then check out the similarities between the web sites. Hat tip to Neil at Vancouver.blogspot.com and the Rapid-I team.
Views: 21644 NeuralMarketTrends
Text Mining in Publishing
 
03:58
TEXT MINING AND SCHOLARLY PUBLISHING: This short video by John Bond of Riverwinds Consulting discusses Text Mining and the Scholarly Publishing Industry. MORE VIDEOS on TEXT MINING and Scholarly Publishing can be found at: https://www.youtube.com/playlist?list=PLqkE49N6nq3jY125di1g8UDADCMvCY1zk FIND OUT more about John Bond and his publishing consulting practice at www.RiverwindsConsulting.com SEND IDEAS for John to discuss on Publishing Defined. Email him at [email protected] or see http://www.PublishingDefined.com CONNECT Twitter: https://twitter.com/JohnHBond LinkedIn: https://www.linkedin.com/in/johnbondnj Google+: https://plus.google.com/u/0/113338584717955505192 Goodreads: https://www.goodreads.com/user/show/51052703-john-bond YouTube: https://www.youtube.com/c/JohnBond BOOKS by John Bond: The Story of You: http://www.booksbyjohnbond.com/the-story-of-you/about-the-book/ You Can Write and Publish a Book: http://www.booksbyjohnbond.com/you-can-write-and-publish-a-book/about-the-book/ TRANSCRIPT: Hi there. I am John Bond from Riverwinds Consulting and this is Publishing Defined. Today I am going to discuss text mining as it relates to scholarly publishing. Text mining also goes by the phrase text data mining or text analytics. Text mining in scholarly publishing is the process of deriving high-quality information from peer reviewed articles and other content. It does this by processing large amounts of information and looking for patterns within the data, and then evaluating and interpreting the results. Text mining is most beneficial to researchers or other power users of technical content. It is very different from a keyword search such that you might perform with Google. A key word search likely produces thousands of web links with no uniformity in the results and certainly no ability to draw meaningful conclusions. An example: let’s say you are researching bladder cancer in men and you are looking for specific biomarkers for other disease states. You probably don’t have the time to review all the literature you might find through a search at PubMed. Text mining will review the available literature. It understands the parts of speech (nouns, verbs), recognizes abbreviations, takes term frequency into account, and other natural language processes. It will filter through all the content, extracts relevant facts, spot patterns, and provides the researcher with a more condensed set of results and statements than a literature search or a cursory review of abstracts ever could. It knows bladder cancer is a disease state. It knows, in this instance, to look for men as opposed to women. It understands what a biomarker is and how to apply this term to other disease states. It understands bladder cancer is a phrase and not being used as two separate terms. Text mining software involves high level programming and such concepts as word frequency distribution, pattern recognition, information extraction, and natural language processing as well as other programming concepts well beyond the scope of this video. The overall goal is to turn text into data for analysis and thereby help to draw conclusions. However, the results of text mining in and of themselves is not the end product, just part of the process. Individual text mining tools or enterprise level ones have become more common with researchers, librarians, and large for profit and not for profit organizations, and they will only grow. Aside from a text mining tool, an application is also necessary to check that the content being mined is licensed and to provide appropriate links to the content. Text mining is important to publishers or any group that holds large stores of full text articles or databases because this information as a whole has greater value than each individual part. Text mining can help extract that value. A key point for publishers is that the text mining tool and its user, such as a researcher, needs to have access to the content either by it being open access, through a subscription, or through a purchase. Subscription publishers see revenue when content is accessed or purchased. All publishers see article downloads and page views from text mining efforts. Either way, text mining as a tool in research, in medicine, in pharmaceutical R&D will only continue to grow in importance. Well that’s it. Please subscribe to my YouTube channel or click on the playlist to see more videos about text mining in scholarly publishing. And make comments below or email me with questions. Thank so much and take care.
Views: 278 John Bond
Text Mining using RapidMiner (Twitter data)
 
47:24
Text Mining using RapidMiner Objective : 1. To determine the type of Document (Positive or Negative) in English Language 2. Analysis the data from Twitter
Views: 4324 Kanda
What is Text Mining?
 
01:49
An introduction to the basics of text and data mining. To learn more about text mining, view the video "How does Text Mining Work?" here: https://youtu.be/xxqrIZyKKuk
Views: 49725 Elsevier
Text mining: Key concepts and applications
 
55:21
Jee-Hyub Kim and Senay Kafkas from the Literature Services team at EMBL-EBI present this talk on an introduction to text mining and its applications in service provision. The 1st part of this talk focuses on what text mining is and some of the methods and available tools. The 2nd part looks at how to find articles on Europe PMC - a free literature resource for biomedical and health researchers - and how to build your own text mining pipeline (starts at 20:30 mins). The final part gives a nice case study showing how Europe PMC's pipeline was integrated into a new drug target validation platform called Open Targets (previously CTTV) (starts at 38:20 mins). This video is best viewed in full screen mode using Google Chrome.
text mining, web mining and sentiment analysis
 
13:28
text mining, web mining
Views: 1542 Kakoli Bandyopadhyay
Text mining tutorial
 
09:51
This text mining techniques can be used during company's recruitment process.
Views: 14670 cyanboy010
How does Text Mining Work?
 
01:34
Understand the basics of how text and data mining works and how it is used to help advance science and medicine. To learn what text mining is, view the video "What is Text Mining?" here: https://youtu.be/I3cjbB38Z4A
Views: 12891 Elsevier
Introduction to Text Analytics with R: Overview
 
30:38
The overview of this video series provides an introduction to text analytics as a whole and what is to be expected throughout the instruction. It also includes specific coverage of: – Overview of the spam dataset used throughout the series – Loading the data and initial data cleaning – Some initial data analysis, feature engineering, and data visualization About the Series This data science tutorial introduces the viewer to the exciting world of text analytics with R programming. As exemplified by the popularity of blogging and social media, textual data if far from dead – it is increasing exponentially! Not surprisingly, knowledge of text analytics is a critical skill for data scientists if this wealth of information is to be harvested and incorporated into data products. This data science training provides introductory coverage of the following tools and techniques: – Tokenization, stemming, and n-grams – The bag-of-words and vector space models – Feature engineering for textual data (e.g. cosine similarity between documents) – Feature extraction using singular value decomposition (SVD) – Training classification models using textual data – Evaluating accuracy of the trained classification models Kaggle Dataset: https://www.kaggle.com/uciml/sms-spam-collection-dataset The data and R code used in this series is available here: https://code.datasciencedojo.com/datasciencedojo/tutorials/tree/master/Introduction%20to%20Text%20Analytics%20with%20R -- At Data Science Dojo, we believe data science is for everyone. Our in-person data science training has been attended by more than 3600+ employees from over 742 companies globally, including many leaders in tech like Microsoft, Apple, and Facebook. -- Learn more about Data Science Dojo here: https://hubs.ly/H0f5JLp0 See what our past attendees are saying here: https://hubs.ly/H0f5JZl0 -- Like Us: https://www.facebook.com/datasciencedojo Follow Us: https://twitter.com/DataScienceDojo Connect with Us: https://www.linkedin.com/company/datasciencedojo Also find us on: Google +: https://plus.google.com/+Datasciencedojo Instagram: https://www.instagram.com/data_science_dojo Vimeo: https://vimeo.com/datasciencedojo
Views: 65251 Data Science Dojo
Web mining 1
 
06:33
Views: 281 hardi rafat
Text Mining Applications by Text Mining Solutions
 
02:47
This is a brief insight into how Text Mining can be utilised across different industries. This video focuses on how Text Mining can be applied in the following industries: - Healthcare - Research - Corporate - Industry - Software - Publishing Text Mining is a flexible tool that can be utilised in near enough every industry. Interested and want to find out more? Go to http://www.textminingsolutions.co.uk Want to know the basics of Text Mining go to https://www.youtube.com/watch?v=zOcvi2R1FOA Follow Text Mining Solutions on: Facebook: https://www.facebook.com/TextMiningSolutions?fref=ts Twitter: https://twitter.com/Txt_Mining LinkedIn: https://www.linkedin.com/company/text-mining-solutions Music by: http://www.purple-planet.com
Views: 597 TxtMining
Text Mining for Beginners
 
07:30
This is a brief introduction to text mining for beginners. Find out how text mining works and the difference between text mining and key word search, from the leader in natural language based text mining solutions. Learn more about NLP text mining in 90 seconds: https://www.youtube.com/watch?v=GdZWqYGrXww Learn more about NLP text mining for clinical risk monitoring https://www.youtube.com/watch?v=SCDaE4VRzIM
Views: 76406 Linguamatics
Week 7: Text Mining Conceptual Overview of Techniques
 
14:35
Carolyn Rose discusses text mining conceptual overview of techniques for week 7 of DALMOOC.
web mining
 
09:29
Views: 94 Hama Awat
How to Build a Text Mining, Machine Learning Document Classification System in R!
 
26:02
We show how to build a machine learning document classification system from scratch in less than 30 minutes using R. We use a text mining approach to identify the speaker of unmarked presidential campaign speeches. Applications in brand management, auditing, fraud detection, electronic medical records, and more.
Views: 163136 Timothy DAuria
Web Usage Mining
 
05:15
Clustering of the web users based on the user navigation patterns....
Views: 7116 GRIETCSEPROJECTS
My Web mining utilities (C# project)
 
03:46
Some utilities that I have made that you can find here: https://github.com/AbleOpus/SamplesAndUtils Instructions on how to use the WebMining class are in the projects directory
Views: 3310 Brian
Text mining
 
06:33
tutorial preparando a base
Views: 1027 gestaodoconhecimento
Weka Text Classification for First Time & Beginner Users
 
59:21
59-minute beginner-friendly tutorial on text classification in WEKA; all text changes to numbers and categories after 1-2, so 3-5 relate to many other data analysis (not specifically text classification) using WEKA. 5 main sections: 0:00 Introduction (5 minutes) 5:06 TextToDirectoryLoader (3 minutes) 8:12 StringToWordVector (19 minutes) 27:37 AttributeSelect (10 minutes) 37:37 Cost Sensitivity and Class Imbalance (8 minutes) 45:45 Classifiers (14 minutes) 59:07 Conclusion (20 seconds) Some notable sub-sections: - Section 1 - 5:49 TextDirectoryLoader Command (1 minute) - Section 2 - 6:44 ARFF File Syntax (1 minute 30 seconds) 8:10 Vectorizing Documents (2 minutes) 10:15 WordsToKeep setting/Word Presence (1 minute 10 seconds) 11:26 OutputWordCount setting/Word Frequency (25 seconds) 11:51 DoNotOperateOnAPerClassBasis setting (40 seconds) 12:34 IDFTransform and TFTransform settings/TF-IDF score (1 minute 30 seconds) 14:09 NormalizeDocLength setting (1 minute 17 seconds) 15:46 Stemmer setting/Lemmatization (1 minute 10 seconds) 16:56 Stopwords setting/Custom Stopwords File (1 minute 54 seconds) 18:50 Tokenizer setting/NGram Tokenizer/Bigrams/Trigrams/Alphabetical Tokenizer (2 minutes 35 seconds) 21:25 MinTermFreq setting (20 seconds) 21:45 PeriodicPruning setting (40 seconds) 22:25 AttributeNamePrefix setting (16 seconds) 22:42 LowerCaseTokens setting (1 minute 2 seconds) 23:45 AttributeIndices setting (2 minutes 4 seconds) - Section 3 - 28:07 AttributeSelect for reducing dataset to improve classifier performance/InfoGainEval evaluator/Ranker search (7 minutes) - Section 4 - 38:32 CostSensitiveClassifer/Adding cost effectiveness to base classifier (2 minutes 20 seconds) 42:17 Resample filter/Example of undersampling majority class (1 minute 10 seconds) 43:27 SMOTE filter/Example of oversampling the minority class (1 minute) - Section 5 - 45:34 Training vs. Testing Datasets (1 minute 32 seconds) 47:07 Naive Bayes Classifier (1 minute 57 seconds) 49:04 Multinomial Naive Bayes Classifier (10 seconds) 49:33 K Nearest Neighbor Classifier (1 minute 34 seconds) 51:17 J48 (Decision Tree) Classifier (2 minutes 32 seconds) 53:50 Random Forest Classifier (1 minute 39 seconds) 55:55 SMO (Support Vector Machine) Classifier (1 minute 38 seconds) 57:35 Supervised vs Semi-Supervised vs Unsupervised Learning/Clustering (1 minute 20 seconds) Classifiers introduces you to six (but not all) of WEKA's popular classifiers for text mining; 1) Naive Bayes, 2) Multinomial Naive Bayes, 3) K Nearest Neighbor, 4) J48, 5) Random Forest and 6) SMO. Each StringToWordVector setting is shown, e.g. tokenizer, outputWordCounts, normalizeDocLength, TF-IDF, stopwords, stemmer, etc. These are ways of representing documents as document vectors. Automatically converting 2,000 text files (plain text documents) into an ARFF file with TextDirectoryLoader is shown. Additionally shown is AttributeSelect which is a way of improving classifier performance by reducing the dataset. Cost-Sensitive Classifier is shown which is a way of assigning weights to different types of guesses. Resample and SMOTE are shown as ways of undersampling the majority class and oversampling the majority class. Introductory tips are shared throughout, e.g. distinguishing supervised learning (which is most of data mining) from semi-supervised and unsupervised learning, making identically-formatted training and testing datasets, how to easily subset outliers with the Visualize tab and more... ---------- Update March 24, 2014: Some people asked where to download the movie review data. It is named Polarity_Dataset_v2.0 and shared on Bo Pang's Cornell Ph.D. student page http://www.cs.cornell.edu/People/pabo/movie-review-data/ (Bo Pang is now a Senior Research Scientist at Google)
Views: 135331 Brandon Weinberg
Text Mining
 
02:53
None-- Created using PowToon -- Free sign up at http://www.powtoon.com/ . Make your own animated videos and animated presentations for free. PowToon is a free tool that allows you to develop cool animated clips and animated presentations for your website, office meeting, sales pitch, nonprofit fundraiser, product launch, video resume, or anything else you could use an animated explainer video. PowToon's animation templates help you create animated presentations and animated explainer videos from scratch. Anyone can produce awesome animations quickly with PowToon, without the cost or hassle other professional animation services require.
Views: 2411 Soumya shetty
Industry Applications of Text Analytics
 
03:00
An overview of why text analytics is useful, and how it can help areas such as surveys, chat bots, social media monitoring, voice of customer, call-logs, and more.
Views: 48588 Lexalytics
Web Mining
 
05:04
Views: 416 awyn walid
Text mining with correspondence analysis
 
11:36
Here is an example of the use of correspondence analysis for textual data. Four methods of multivariate data analysis are descibed by words and compared with correspondence analysis.
Views: 4815 François Husson
Text Mining In R | Natural Language Processing | Data Science Certification Training | Edureka
 
36:29
** Data Science Certification using R: https://www.edureka.co/data-science ** In this video on Text Mining In R, we’ll be focusing on the various methodologies used in text mining in order to retrieve useful information from data. The following topics are covered in this session: (01:18) Need for Text Mining (03:56) What Is Text Mining? (05:42) What is NLP? (07:00) Applications of NLP (08:33) Terminologies in NLP (14:09) Demo Blog Series: http://bit.ly/data-science-blogs Data Science Training Playlist: http://bit.ly/data-science-playlist - - - - - - - - - - - - - - - - - Subscribe to our channel to get video updates. Hit the subscribe button above: https://goo.gl/6ohpTV Instagram: https://www.instagram.com/edureka_learning/ Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka - - - - - - - - - - - - - - - - - #textmining #textminingwithr #naturallanguageprocessing #datascience #datasciencetutorial #datasciencewithr #datasciencecourse #datascienceforbeginners #datasciencetraining #datasciencetutorial - - - - - - - - - - - - - - - - - About the Course Edureka's Data Science course will cover the whole data lifecycle ranging from Data Acquisition and Data Storage using R-Hadoop concepts, Applying modeling through R programming using Machine learning algorithms and illustrate impeccable Data Visualization by leveraging on 'R' capabilities. - - - - - - - - - - - - - - Why Learn Data Science? Data Science training certifies you with ‘in demand’ Big Data Technologies to help you grab the top paying Data Science job title with Big Data skills and expertise in R programming, Machine Learning and Hadoop framework. After the completion of the Data Science course, you should be able to: 1. Gain insight into the 'Roles' played by a Data Scientist 2. Analyze Big Data using R, Hadoop and Machine Learning 3. Understand the Data Analysis Life Cycle 4. Work with different data formats like XML, CSV and SAS, SPSS, etc. 5. Learn tools and techniques for data transformation 6. Understand Data Mining techniques and their implementation 7. Analyze data using machine learning algorithms in R 8. Work with Hadoop Mappers and Reducers to analyze data 9. Implement various Machine Learning Algorithms in Apache Mahout 10. Gain insight into data visualization and optimization techniques 11. Explore the parallel processing feature in R - - - - - - - - - - - - - - Who should go for this course? The course is designed for all those who want to learn machine learning techniques with implementation in R language, and wish to apply these techniques on Big Data. The following professionals can go for this course: 1. Developers aspiring to be a 'Data Scientist' 2. Analytics Managers who are leading a team of analysts 3. SAS/SPSS Professionals looking to gain understanding in Big Data Analytics 4. Business Analysts who want to understand Machine Learning (ML) Techniques 5. Information Architects who want to gain expertise in Predictive Analytics 6. 'R' professionals who want to captivate and analyze Big Data 7. Hadoop Professionals who want to learn R and ML techniques 8. Analysts wanting to understand Data Science methodologies. For online Data Science training, please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll-free) for more information.
Views: 1873 edureka!
Text Mining II: Beispielprozess und Methodik
 
20:47
Referent: Dr. Max Köhler, Business Expert Analytics, SAS Vortrag auf der Konferenz für SAS-Anwender in Forschung und Entwicklung (KSFE), 27.3.2014, Göttingen Mit Text Mining werden unstrukturierte Daten so aufbereitet, dass sie strukturiert vorliegen. Auf dem Weg dorthin soll einerseits wenig Information verloren gehen und andererseits das Ziel der Übersichtlichkeit verfolgt werden. Wie kann das realisiert werden? Der Vortrag zeigt anhand konkreter Beispiele wie die Verfahren eines typischen Text Mining Prozesses sinnvoll miteinander kombiniert werden können, um Textinhalte zu formalisieren, Strukturen zu entdecken und für das Data Mining nutzbar zu machen.
Views: 963 SAS Software D-A-CH
Linking Text Mining Efforts to Semantic Web
 
13:58
http://togotv.dbcls.jp/20130629.html http://www.slideshare.net/jindong/pubannotation-ontocloudlodqa NBDC / DBCLS BioHackathon 2013 was held in Tokyo, Japan. Main focus of this BioHackathon is semantic interoperability and standardization of bioinformatics data and Web services. The participants discussed, explored and developed web applications and interoperability (DDBJ/UniProt, SADI, TogoGenome, Schema.org etc.), generation and standardization of RDF data (Open Bio* tools, SIO, FALDO, Identifiers.org etc.), text-mining, NLP and ontology mapping (LODQA, BioPortal, NanoPublication etc.), quality assessment of SPARQL endpoints (availability, contents, CORS etc.) and standardization of RDF data in specific domains. On the first day of the BioHackathon (Jun. 23), public symposium of the BioHackathon 2013 was held at Tokyo Skytree Space 634. In this talk, Jin-Dong Kim makes a presentation entitled "Linking Text Mining Efforts to Semantic Web".
Views: 521 togotv
Text Analysis Extension for RapidMiner - Getting started
 
05:47
GET STARTED HERE: https://marketplace.rapidminer.com/UpdateServer/faces/product_details.xhtml?productId=rmx_com.aylien.textapi.rapidminer Tutorial video on how to get started with with AYLIEN's Text Analysis Extension for RapidMiner.
Views: 1316 AYLIEN
presentation of text mining
 
13:27
Presentation of text mining in EEL6825,UFL. Recorded by camera, date error are caused by camera setting. (The debut audio recorder has some problem that cannot be heard clearly, so I switched to camera.)
Views: 522 Daifei Han
Text mining using rapidminer
 
01:33
Contact Best Phd Projects Visit us: http://www.phdprojects.org/ http://www.phdprojects.org/phd-research-topic-mobile-cloud-computing/
Views: 663 PHD Projects
SAS® Text Analytics Software Demo
 
04:51
http://www.sas.com/en_us/software/analytics/text-miner.html SAS Text Analytics help companies address big data issues that arise from unstructured content by applying linguistic rules and statistical methods. SAS TEXT MINER Get faster, deeper insight from unstructured data. Why limit yourself to analyzing legacy data? Our text mining software lets you easily analyze text data from the web, comment fields, books and other text sources. Discover new information, topics and term relationships that deepen your understanding. And add what you learn to your models to improve lift and performance. Benefits: * Improve model performance. * Add subject-matter expertise. * Automatically know more. * Determine what's hot and what's not. LEARN MORE ABOUT SAS TEXT MINER http://www.sas.com/en_us/software/analytics/text-miner.html SUBSCRIBE TO THE SAS SOFTWARE YOUTUBE CHANNEL http://www.youtube.com/subscription_center?add_user=sassoftware ABOUT SAS SAS is the leader in business analytics software and services, and the largest independent vendor in the business intelligence market. Through innovative solutions, SAS helps customers at more than 75,000 sites improve performance and deliver value by making better decisions faster. Since 1976 SAS has been giving customers around the world The Power to Know.® VISIT SAS http://www.sas.com CONNECT WITH SAS SAS ► http://www.sas.com SAS Customer Support ► http://support.sas.com SAS Communities ► http://communities.sas.com Facebook ► https://www.facebook.com/SASsoftware Twitter ► https://www.twitter.com/SASsoftware LinkedIn ► http://www.linkedin.com/company/sas Google+ ► https://plus.google.com/+sassoftware Blogs ► http://blogs.sas.com RSS ►http://www.sas.com/rss To learn more about SAS Text Analytics, visit http://www.sas.com/textanalytics
Views: 24288 SAS Software
Text Analytics Challenges
 
17:14
Text Analytics Challenges
Views: 264 DecoodaTV
IXXO Web Mining Software - Big Data and Market Intelligence
 
03:25
How to create an interactive map of the Big Data ecosystem with IXXO Web Mining Software Discover more on http://www.ixxo-software.com
Views: 274 IxxoWebMining