Home
Search results “Business understanding data mining”
Data Science Methodology 101 - Business Understanding Concepts and Case Study
 
05:52
Enroll in the course for free at: https://bigdatauniversity.com/courses/data-science-methodology-2/ Data Science Methodology Grab you lab coat, beakers, and pocket calculator…wait what? wrong path! Fast forward and get in line with emerging data science methodologies that are in use and are making waves or rather predicting and determining which wave is coming and which one has just passed. Connect with Big Data University: https://www.facebook.com/bigdatauniversity https://twitter.com/bigdatau https://www.linkedin.com/groups/4060416/profile ABOUT THIS COURSE •This course is free. •It is self-paced. •It can be taken at any time. •It can be audited as many times as you wish. Learn the major steps involved in tackling a data science problem. Learn the major steps involved in practicing data science, with interesting real-world examples at each step: from forming a concrete business or research problem, to collecting and analyzing data, to building a model, and understanding the feedback after model deployment. https://bigdatauniversity.com/courses/data-science-methodology-2/
Views: 14234 Cognitive Class
Data Mining using R | Data Mining Tutorial for Beginners | R Tutorial for Beginners | Edureka
 
36:36
( R Training : https://www.edureka.co/r-for-analytics ) This Edureka R tutorial on "Data Mining using R" will help you understand the core concepts of Data Mining comprehensively. This tutorial will also comprise of a case study using R, where you'll apply data mining operations on a real life data-set and extract information from it. Following are the topics which will be covered in the session: 1. Why Data Mining? 2. What is Data Mining 3. Knowledge Discovery in Database 4. Data Mining Tasks 5. Programming Languages for Data Mining 6. Case study using R Subscribe to our channel to get video updates. Hit the subscribe button above. Check our complete Data Science playlist here: https://goo.gl/60NJJS #LogisticRegression #Datasciencetutorial #Datasciencecourse #datascience How it Works? 1. There will be 30 hours of instructor-led interactive online classes, 40 hours of assignments and 20 hours of project 2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course. 3. You will get Lifetime Access to the recordings in the LMS. 4. At the end of the training you will have to complete the project based on which we will provide you a Verifiable Certificate! - - - - - - - - - - - - - - About the Course Edureka's Data Science course will cover the whole data life cycle ranging from Data Acquisition and Data Storage using R-Hadoop concepts, Applying modelling through R programming using Machine learning algorithms and illustrate impeccable Data Visualization by leveraging on 'R' capabilities. - - - - - - - - - - - - - - Why Learn Data Science? Data Science training certifies you with ‘in demand’ Big Data Technologies to help you grab the top paying Data Science job title with Big Data skills and expertise in R programming, Machine Learning and Hadoop framework. After the completion of the Data Science course, you should be able to: 1. Gain insight into the 'Roles' played by a Data Scientist 2. Analyse Big Data using R, Hadoop and Machine Learning 3. Understand the Data Analysis Life Cycle 4. Work with different data formats like XML, CSV and SAS, SPSS, etc. 5. Learn tools and techniques for data transformation 6. Understand Data Mining techniques and their implementation 7. Analyse data using machine learning algorithms in R 8. Work with Hadoop Mappers and Reducers to analyze data 9. Implement various Machine Learning Algorithms in Apache Mahout 10. Gain insight into data visualization and optimization techniques 11. Explore the parallel processing feature in R - - - - - - - - - - - - - - Who should go for this course? The course is designed for all those who want to learn machine learning techniques with implementation in R language, and wish to apply these techniques on Big Data. The following professionals can go for this course: 1. Developers aspiring to be a 'Data Scientist' 2. Analytics Managers who are leading a team of analysts 3. SAS/SPSS Professionals looking to gain understanding in Big Data Analytics 4. Business Analysts who want to understand Machine Learning (ML) Techniques 5. Information Architects who want to gain expertise in Predictive Analytics 6. 'R' professionals who want to captivate and analyze Big Data 7. Hadoop Professionals who want to learn R and ML techniques 8. Analysts wanting to understand Data Science methodologies For more information, please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll-free). Website: https://www.edureka.co/data-science Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka Customer Reviews: Gnana Sekhar Vangara, Technology Lead at WellsFargo.com, says, "Edureka Data science course provided me a very good mixture of theoretical and practical training. The training course helped me in all areas that I was previously unclear about, especially concepts like Machine learning and Mahout. The training was very informative and practical. LMS pre recorded sessions and assignmemts were very good as there is a lot of information in them that will help me in my job. The trainer was able to explain difficult to understand subjects in simple terms. Edureka is my teaching GURU now...Thanks EDUREKA and all the best. " Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka
Views: 69970 edureka!
How it Works: The Business of Data
 
03:49
How exactly does the business of data work? How do we combine different data sources and cognitive analytics to deliver new services that deliver tangible value?
Views: 8743 IBM Think Academy
Data Warehouse Tutorial For Beginners | Data Warehouse Concepts | Data Warehousing | Edureka
 
01:38:50
** Data Warehousing & BI Training: https://www.edureka.co/data-warehousing-and-bi ** This Data Warehouse Tutorial For Beginners will give you an introduction to data warehousing and business intelligence. You will be able to understand basic data warehouse concepts with examples. The following topics have been covered in this tutorial: 1. What Is The Need For BI? 2. What Is Data Warehousing? 3. Key Terminologies Related To DWH Architecture: a. OLTP Vs OLAP b. ETL c. Data Mart d. Metadata 4. DWH Architecture 5. Demo: Creating A DWH - - - - - - - - - - - - - - Check our complete Data Warehousing & Business Intelligence playlist here: https://goo.gl/DZEuZt. #DataWarehousing #DataWarehouseTutorial #DataWarehouseTraining Subscribe to our channel to get video updates. Hit the subscribe button above. - - - - - - - - - - - - - - How it Works? 1. This is a 5 Week Instructor led Online Course, 25 hours of assignment and 10 hours of project work 2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course. 3. At the end of the training you will have to undergo a 2-hour LIVE Practical Exam based on which we will provide you a Grade and a Verifiable Certificate! - - - - - - - - - - - - - - About the Course: Edureka's Data Warehousing and Business Intelligence Course, will introduce participants to create and work with leading ETL & BI tools like: 1. Talend 5.x to create, execute, monitor and schedule ETL processes. It will cover concepts around Data Replication, Migration and Integration Operations 2. Tableau 9.x for data visualization to see how easy and reliable data visualization can become for representation with dashboards 3. Data Modeling tool ERwin r9 to create a Data Warehouse or Data Mart - - - - - - - - - - - - - - Who should go for this course? The following professionals can go for this course: 1. Data warehousing enthusiasts 2. Analytics Managers 3. Data Modelers 4. ETL Developers and BI Developers - - - - - - - - - - - - - - Why learn Data Warehousing and Business Intelligence? All the successful companies have been investing large sums of money in business intelligence and data warehousing tools and technologies. Up-to-date, accurate and integrated information about their supply chain, products and customers are critical for their success. With the advent of Mobile, Social and Cloud platform, today's business intelligence tools have evolved and can be categorized into five areas, including databases, extraction transformation and load (ETL) tools, data quality tools, reporting tools and statistical analysis tools. This course will provide a strong foundation around Data Warehousing and Business Intelligence fundamentals and sophisticated tools like Talend, Tableau and ERwin. - - - - - - - - - - - - - - For more information, please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll-free). Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka - - - - - - - - - - - - - - Customer Review: Kanishk says, "Underwent Mastering in DW-BI Course. The training material and trainer are up to the mark to get yourself acquainted to the new technology. Very helpful support service from Edureka."
Views: 239472 edureka!
Bitcoin and cryptocurrency mining explained
 
07:46
https://www.udemy.com/blockchain-for-business-the-new-industrial-revolution/?couponCode=YOUTUBE Bitcoin and cryptocurrency mining explained with the the Byzantine Generals Problem. The Byzantine Generals problem was first introduced in a computer science paper published in 1982. The problem discussed in the paper is that reliable computer systems must be able to function effectively in the presence of faulty components that may send conflicting information to different parts of the system. This issue is even more acute when we talk about decentralized computer networks. Imagine the following thought experiment: The Byzantine army has surrounded an enemy city. The army is organized into several units. Each unit is commanded by a general and they all need to come up with a coordinated plan of action. However, they are located away from each other and the only means to communicate among themselves is via messages. To make things more complicated, one or more of the generals are possibly traitors. The presence of disloyal generals means that misleading messages could be sent aiming to disrupt any coordinated plan of action, be it attack or retreat. To find a successful solution to this conundrum, the Byzantine army needs to find its path to coordinated action, one way or another. To achieve this, the Byzantine army needs an algorithm that works effectively towards a coordinated outcome where the loyal generals follow it and the traitors don’t. Now that you are familiar with the problem, let’s see its solution. It is called the Byzantine Fault Tolerance algorithm. Over the years, there have been several proposed theoretical solutions involving game theory and math. The first practical implementation of Byzantine Fault Tolerance algorithm came with the Bitcoin’s Proof-of-Work. In this case the “generals” are nodes on the Bitcoin network, also known as “miners”. A network node is a connection point that can receive, create, store and send data across a network. In other words, nodes are the connected dots that make up a network. To simplify, think of it in the following way. In the image we traditionally use to depict a blockchain, every single computer is a separate node. They are all connected and can receive, create, store, and send data to each other. In the context of the Byzantine Fault Tolerance algorithm, the important concept to grasp is that these mining nodes start from the assumption that nobody else on the network can be trusted. Proof-of-Work secures network consensus even in the presence of non-compliant nodes. That is, even if there are some Byzantine generals who are not acting in the army’s best interest, coordinated action can still be achieved. Let’s see how this mechanism works in Bitcoin. As we all know by now, Bitcoin is a peer-to-peer network where all activities are done by its users through appropriate software and hardware. These activities include making transactions, receiving transactions, and verifying and transmitting transactions. Now, this is where we need to introduce the concept of “mining”, which many of you have probably heard. Mining is an activity, carried out by network participants, which involves Proof-of-Work and results in generating new coins as a reward for the miner who successfully did this Proof-of-Work first for each new block. On Facebook: https://www.facebook.com/365careers/ On the web: http://www.365careers.com/ On Twitter: https://twitter.com/365careers Subscribe to our channel: https://www.youtube.com/365careers
Views: 18262 365 Careers
Basics of Data Mining
 
09:50
Views: 65214 Prabhudev Konana
What is a Data Model?
 
04:07
Why is a Data Model so important? What is a packaged Data Model? How does a Data Model fit into a Data Warehousing project? This video addresses these basic questions and helps Business Users have realistic expectations about packaged models. To Talk with a Specialist go to: http://www.intricity.com/intricity101/
Views: 84942 Intricity101
Decision Tree 1: how it works
 
09:26
Full lecture: http://bit.ly/D-Tree A Decision Tree recursively splits training data into subsets based on the value of a single attribute. Each split corresponds to a node in the. Splitting stops when every subset is pure (all elements belong to a single class) -- this can always be achieved, unless there are duplicate training examples with different classes.
Views: 508808 Victor Lavrenko
What is Business Intelligence (BI)?
 
03:47
There are many definitions for Business Intelligence, or BI. To put it simply, BI is about delivering relevant and reliable information to the right people at the right time with the goal of achieving better decisions faster. If you wanna have efficient access to accurate, understandable and actionable information on demand, then BI might be right for your organization. For more information, contact Hitachi Solutions Canada (canada.hitachi-solutions.com).
Views: 373538 Hitachi Solutions Canada
Last Minute Tutorials | Data mining | Introduction | Examples
 
04:13
Please feel free to get in touch with me :) If it helped you, please like my facebook page and don't forget to subscribe to Last Minute Tutorials. Thaaank Youuu. Facebook: https://www.facebook.com/Last-Minute-Tutorials-862868223868621/ Website: www.lmtutorials.com For any queries or suggestions, kindly mail at: [email protected]
Views: 44615 Last Minute Tutorials
Learn Basic statistics for Business Analytics
 
17:59
Please watch: "logistic regression case study" https://www.youtube.com/watch?v=M9Reulcqb2g --~-- Learn Basic statistics for Business Analytics Business Analytics and Data Science is almost same concept. For both we need to learn Statistics. In this video I tried to create value on most used statistical methods for Data Science or Business Analytics for Statistical model Building. Statistics is the study of the collection, analysis, interpretation, presentation, and organization of data. In applying statistics any can handle a scientific, industrial, or societal problem. I value your time and effort that is why I have capture almost 20 statically concept in this video. Learn Basic statistics for Business Analytics Here I have capture how to learn Mean, how to learn Mode, How to learn median, Concept of Sleekness, Concept of Kurtosis, learn Variables, concept of Standard deviation, Concept of Covariance, Concept of correlation, Concept of regression, How to read regression formula, how to read regression graph, Concept of Intercept, Concept of slope coefficient, Concept of Random Error, Different types of regression Analysis, Concept ANOVA (Analysis of Variance), How to read ANOVA table, How to learn R square (Interpreted R square), Concept of Adjusted R Square, Concept of F test, Concept of Information Value, Concept of WOE, Concept of Variable inflation Factors. Learn Basic statistics for Business Analytics By this video you can Start Learn statistics for Data Science and Business analytics easily and effectively. These statistics are useful when at the time of running linear regression, Logistic regression statistics models. For Statistical Data Exploration you may need to see Meager of central tendency and Data Spread in Statistics. By Understanding Mean, Mode, Median, Sleekness, Kurtosis, Variance, Standard deviation. Learn Basic statistics for Business Analytics To understand statistical relationship between variables you can use Covariance, Correlation coefficient, Regression , ANOVA (Analysis of Variance) . Learn Basic statistics for Business Analytics To understand Strength of stastical relationship between variables you can use R square, Adjusted R square, F test. If you want to understand variable importance in your stastical model you can use Information value (IV) and Weight of evidence (WOE) Concept. Information value and Weight of evidence mostly used in Logistic Regression Analysis. Learn Basic statistics for Business Analytics Variable inflation factors (VIF) is used for understanding, It is the stastical method to understand variable importance. What is the importance of this variable statically in the Regression model? By VIF we check Correlation between variable. Learn Basic statistics for Business Analytics At last I have explained when to use ANOVA, When to Use Linear regression and when to use Logistic regression. Learn Basic statistics for Business Analytics Thank you So much for watching this video, Hope I can add some value in your Journey as a Statistician, Business Analytics professional and Data Scientist professional. Blogger : http://koustav.analyticsanalysis.busi... google plus: https://plus.google.com/u/0/115750715 facebook link: https://www.facebook.com/koustav.biswas.31945?ref=bookmarks website: https://www.analyticsanalysisbusiness.com
AI for Marketing & Growth #1 - Predictive Analytics in Marketing
 
03:17
AI for Marketing & Growth #1 - Predictive Analytics in Marketing Download our list of the world's best AI Newsletters 👉https://hubs.ly/H0dL7N60 Welcome to our brand new AI for Marketing & Growth series in which we’ll get you up to speed on Predictive Analytics in Marketing! This series you-must-watch-this-every-two-weeks sort of series or you’re gonna get left behind.. Predictive analytics in marketing is a form of data mining that uses machine learning and statistical modeling to predict the future. Based on historical data. Applications in action are all around us already. For example, If your bank notifies you of suspicious activity on your bank card, it is likely that a statistical model was used to predict your future behavior based on your past transactions. Serious deviations from this pattern are flagged as suspicious. And that’s when you get the notification. So why should marketers care? Marketers can use it to help optimise conversions for their funnels by forecasting the best way to move leads down the different stages, turning them into qualified prospects and eventually converting them into paying customers. Now, if you can predict your customers’ behavior along the funnel, you can also think of messages to best influence that behavior and reach your customer’s highest potential value. This is super-intelligence for marketers! Imagine if you could not only determine whether a lead is a good fit for your product but also which are most promising. This’ll allow you to focus your team’s efforts on leads with the highest ROI. Which will also imply a shift in mindset. Going from quantity metrics, or how many leads you can attract, to quality metrics, or how many good leads you can engage. You can now easily predict your OMTM or KPIs in real-time and finally push vanity metrics aside. For example, based on my location, age, past purchases, and gender, how likely are you to buy eggs I if you just added milk to your basket? A supermarket can use this information to automatically recommend products to you A financial services provider can use thousands of data points created by your online behaviour to decide which credit card to offer you, and when. A fashion retailer can use your data to decide which shoes to recommend as your next purchase, based on the jacket you just bought. Sure, businesses can improve their conversion rates, but the implications are much bigger than that. Predictive analytics allows companies to set pricing strategies based on consumer expectations and competitor benchmarks. Retailers can predict demand, and therefore make sure they have the right level of stock for each of their products. The evidence of this revolution is already around us. Every time we type a search query into Google, Facebook or Amazon we’re feeding data into the machine. The machine thrives on data, growing ever more intelligent. To leverage the potential of artificial intelligence and predictive analytics, there are four elements that organizations need to put into place. 1. The right questions 2. The right data 3. The right technology 4. The right people Ok.. let’s look at some use cases of businesses that are already leveraging predictive analytics. Other topics discussed: Ai analytics case study artificial intelligence big data deep learning demand forecasting forecasting sales machine learning predictive analytics in marketing data mining statistical modelling predict the future historical data AI Marketing machine learning marketing machine learning in marketing artificial intelligence in marketing artificial intelligence AI Machine learning ------------------------------------------------------- Amsterdam bound? Want to make AI your secret weapon? Join our A.I. for Marketing and growth Course! A 2-day course in Amsterdam. No previous skills or coding required! https://hubs.ly/H0dkN4W0 OR Check out our 2-day intensive, no-bullshit, skills and knowledge Growth Hacking Crash Course: https://hubs.ly/H0dkN4W0 OR our 6-Week Growth Hacking Evening Course: https://hubs.ly/H0dkN4W0 OR Our In-House Training Programs: https://hubs.ly/H0dkN4W0 OR The world’s only Growth & A.I. Traineeship https://hubs.ly/H0dkN4W0 Make sure to check out our website to learn more about us and for more goodies: https://hubs.ly/H0dkN4W0 London Bound? Join our 2-day intensive, no-bullshit, skills and knowledge Growth Marketing Course: https://hubs.ly/H0dkN4W0 ALSO! Connect with Growth Tribe on social media and stay tuned for nuggets of wisdom, updates and more: Facebook: https://www.facebook.com/GrowthTribeIO/ LinkedIn: https://www.linkedin.com/company/growth-tribe Twitter: https://twitter.com/GrowthTribe/ Instagram: https://www.instagram.com/growthtribe/ Snapchat: growthtribe Video URL: https://youtu.be/uk82DHcU7z8
Views: 18236 Growth Tribe
Mirco Musolesi: Mining and Understanding Big (and Small) Mobile Data
 
25:18
This talk was recorded at Europe's first Computational Social Science conference at the University of Warwick in June 2014, hosted by the Data Science Lab at Warwick Business School (http://www.datasciencelab.co.uk). ABSTRACT | Mobile phones are increasingly equipped with sensors, such as accelerometers, GPS receivers, proximity sensors and cameras, which, together with social media infromation can be used to sense and interpret people behaviour in real-time. Novel user-centered sensing applications can be built by exploiting the availability of these technologies. Moreover, data extracted from the sensors can also be used to model and predict people behaviour and movement patterns, providing a very rich set of multi-dimensional and linked data, which can be extremely useful, for instance, for marketing applications, real-time support for policy-makers and health interventions. In this talk I will discuss some recent projects in the area of large-scale scale data mining and modelling of mobile data, with a focus on human mobility prediction and epidemic spreading containment. I will also overview other possible practical applications of this work, in particular with respect to the emerging area of anticipatory computing and the challenges ahead for the research community. BIOGRAPHY | Dr. Mirco Musolesi is a Reader in Networked Systems and Data Science at the School of Computer Science at the University of Birmingham. He received a PhD in Computer Science from University College London in 2007. Before joining Birmingham, he held research positions at Dartmouth College and Cambridge and a Lectureship at the University of St Andrews. His research interests lie at the interface of different areas, namely ubiquitous computing, large-scale data mining, and network science.
Views: 296 Data Science Lab
Understanding Data (Business Data Mining Lecture 1 Part 2)
 
40:31
การทำความเข้าใจข้อมูล ในวิชาการทำเหมืองข้อมูลเชิงธุรกิจ (ฺBusiness Data Mining) ภาควิชาการจัดการเทคโนโลยีสารสนเทศ คณะเทคโนโลยีสารสนเทศ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ
Views: 182 Phayung Meesad
An Introduction to Linear Regression Analysis
 
05:18
Tutorial introducing the idea of linear regression analysis and the least square method. Typically used in a statistics class. Playlist on Linear Regression http://www.youtube.com/course?list=ECF596A4043DBEAE9C Like us on: http://www.facebook.com/PartyMoreStudyLess Created by David Longstreet, Professor of the Universe, MyBookSucks http://www.linkedin.com/in/davidlongstreet
Views: 741536 statisticsfun
Business Understanding
 
01:50
Animated Video created using Animaker - https://www.animaker.com Bana
Views: 19 Niko Muñoz
K-Means Clustering Algorithm - Cluster Analysis | Machine Learning Algorithm | Data Science |Edureka
 
50:19
( Data Science Training - https://www.edureka.co/data-science ) This Edureka k-means clustering algorithm tutorial video (Data Science Blog Series: https://goo.gl/6ojfAa) will take you through the machine learning introduction, cluster analysis, types of clustering algorithms, k-means clustering, how it works along with an example/ demo in R. This Data Science with R tutorial video is ideal for beginners to learn how k-means clustering work. You can also read the blog here: https://goo.gl/QM8on4 Subscribe to our channel to get video updates. Hit the subscribe button above. Check our complete Data Science playlist here: https://goo.gl/60NJJS #kmeans #clusteranalysis #clustering #datascience #machinelearning How it Works? 1. There will be 30 hours of instructor-led interactive online classes, 40 hours of assignments and 20 hours of project 2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course. 3. You will get Lifetime Access to the recordings in the LMS. 4. At the end of the training you will have to complete the project based on which we will provide you a Verifiable Certificate! - - - - - - - - - - - - - - About the Course Edureka's Data Science course will cover the whole data life cycle ranging from Data Acquisition and Data Storage using R-Hadoop concepts, Applying modelling through R programming using Machine learning algorithms and illustrate impeccable Data Visualization by leveraging on 'R' capabilities. - - - - - - - - - - - - - - Why Learn Data Science? Data Science training certifies you with ‘in demand’ Big Data Technologies to help you grab the top paying Data Science job title with Big Data skills and expertise in R programming, Machine Learning and Hadoop framework. After the completion of the Data Science course, you should be able to: 1. Gain insight into the 'Roles' played by a Data Scientist 2. Analyse Big Data using R, Hadoop and Machine Learning 3. Understand the Data Analysis Life Cycle 4. Work with different data formats like XML, CSV and SAS, SPSS, etc. 5. Learn tools and techniques for data transformation 6. Understand Data Mining techniques and their implementation 7. Analyse data using machine learning algorithms in R 8. Work with Hadoop Mappers and Reducers to analyze data 9. Implement various Machine Learning Algorithms in Apache Mahout 10. Gain insight into data visualization and optimization techniques 11. Explore the parallel processing feature in R - - - - - - - - - - - - - - Who should go for this course? The course is designed for all those who want to learn machine learning techniques with implementation in R language, and wish to apply these techniques on Big Data. The following professionals can go for this course: 1. Developers aspiring to be a 'Data Scientist' 2. Analytics Managers who are leading a team of analysts 3. SAS/SPSS Professionals looking to gain understanding in Big Data Analytics 4. Business Analysts who want to understand Machine Learning (ML) Techniques 5. Information Architects who want to gain expertise in Predictive Analytics 6. 'R' professionals who want to captivate and analyze Big Data 7. Hadoop Professionals who want to learn R and ML techniques 8. Analysts wanting to understand Data Science methodologies For more information, Please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll free). Instagram: https://www.instagram.com/edureka_learning/ Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka Customer Reviews: Gnana Sekhar Vangara, Technology Lead at WellsFargo.com, says, "Edureka Data science course provided me a very good mixture of theoretical and practical training. The training course helped me in all areas that I was previously unclear about, especially concepts like Machine learning and Mahout. The training was very informative and practical. LMS pre recorded sessions and assignmemts were very good as there is a lot of information in them that will help me in my job. The trainer was able to explain difficult to understand subjects in simple terms. Edureka is my teaching GURU now...Thanks EDUREKA and all the best. "
Views: 66677 edureka!
How Big Data Is Used In Amazon Recommendation Systems | Big Data Application & Example | Simplilearn
 
02:40
This Big Data Video will help you understand how Amazon is using Big Data is ued in their recommendation syatems. You will understand the importance of Big Data using case study. Recommendation systems have impacted or even redefined our lives in many ways. One example of this impact is how our online shopping experience is being redefined. As we browse through products, the Recommendation system offer recommendations of products we might be interested in. Regardless of the perspectives, business or consumer, Recommendation systems have been immensely beneficial. And big data is the driving force behind Recommendation systems. Subscribe to Simplilearn channel for more Big Data and Hadoop Tutorials - https://www.youtube.com/user/Simplilearn?sub_confirmation=1 Check our Big Data Training Video Playlist: https://www.youtube.com/playlist?list=PLEiEAq2VkUUJqp1k-g5W1mo37urJQOdCZ Big Data and Analytics Articles - https://www.simplilearn.com/resources/big-data-and-analytics?utm_campaign=Amazon-BigData-S4RL6prqtGQ&utm_medium=Tutorials&utm_source=youtube To gain in-depth knowledge of Big Data and Hadoop, check our Big Data Hadoop and Spark Developer Certification Training Course: http://www.simplilearn.com/big-data-and-analytics/big-data-and-hadoop-training?utm_campaign=Amazon-BigData-S4RL6prqtGQ&utm_medium=Tutorials&utm_source=youtube #bigdata #bigdatatutorialforbeginners #bigdataanalytics #bigdatahadooptutorialforbeginners #bigdatacertification #HadoopTutorial - - - - - - - - - About Simplilearn's Big Data and Hadoop Certification Training Course: The Big Data Hadoop and Spark developer course have been designed to impart an in-depth knowledge of Big Data processing using Hadoop and Spark. The course is packed with real-life projects and case studies to be executed in the CloudLab. Mastering real-time data processing using Spark: You will learn to do functional programming in Spark, implement Spark applications, understand parallel processing in Spark, and use Spark RDD optimization techniques. You will also learn the various interactive algorithm in Spark and use Spark SQL for creating, transforming, and querying data form. As a part of the course, you will be required to execute real-life industry-based projects using CloudLab. The projects included are in the domains of Banking, Telecommunication, Social media, Insurance, and E-commerce. This Big Data course also prepares you for the Cloudera CCA175 certification. - - - - - - - - What are the course objectives of this Big Data and Hadoop Certification Training Course? This course will enable you to: 1. Understand the different components of Hadoop ecosystem such as Hadoop 2.7, Yarn, MapReduce, Pig, Hive, Impala, HBase, Sqoop, Flume, and Apache Spark 2. Understand Hadoop Distributed File System (HDFS) and YARN as well as their architecture, and learn how to work with them for storage and resource management 3. Understand MapReduce and its characteristics, and assimilate some advanced MapReduce concepts 4. Get an overview of Sqoop and Flume and describe how to ingest data using them 5. Create database and tables in Hive and Impala, understand HBase, and use Hive and Impala for partitioning 6. Understand different types of file formats, Avro Schema, using Arvo with Hive, and Sqoop and Schema evolution 7. Understand Flume, Flume architecture, sources, flume sinks, channels, and flume configurations 8. Understand HBase, its architecture, data storage, and working with HBase. You will also understand the difference between HBase and RDBMS 9. Gain a working knowledge of Pig and its components 10. Do functional programming in Spark 11. Understand resilient distribution datasets (RDD) in detail 12. Implement and build Spark applications 13. Gain an in-depth understanding of parallel processing in Spark and Spark RDD optimization techniques 14. Understand the common use-cases of Spark and the various interactive algorithms 15. Learn Spark SQL, creating, transforming, and querying Data frames - - - - - - - - - - - Who should take up this Big Data and Hadoop Certification Training Course? Big Data career opportunities are on the rise, and Hadoop is quickly becoming a must-know technology for the following professionals: 1. Software Developers and Architects 2. Analytics Professionals 3. Senior IT professionals 4. Testing and Mainframe professionals 5. Data Management Professionals 6. Business Intelligence Professionals 7. Project Managers 8. Aspiring Data Scientists - - - - - - - - For more updates on courses and tips follow us on: - Facebook : https://www.facebook.com/Simplilearn - Twitter: https://twitter.com/simplilearn - LinkedIn: https://www.linkedin.com/company/simplilearn - Website: https://www.simplilearn.com Get the android app: http://bit.ly/1WlVo4u Get the iOS app: http://apple.co/1HIO5J0
Views: 29781 Simplilearn
Data Understanding
 
01:31
Check out all of Udacity's courses at https://www.udacity.com/courses
Views: 24645 Udacity
Intro to Data Analysis / Visualization with Python, Matplotlib and Pandas | Matplotlib Tutorial
 
22:01
Python data analysis / data science tutorial. Let’s go! For more videos like this, I’d recommend my course here: https://www.csdojo.io/moredata Sample data and sample code: https://www.csdojo.io/data My explanation about Jupyter Notebook and Anaconda: https://bit.ly/2JAtjF8 Also, keep in touch on Twitter: https://twitter.com/ykdojo And Facebook: https://www.facebook.com/entercsdojo Outline - check the comment section for a clickable version: 0:37: Why data visualization? 1:05: Why Python? 1:39: Why Matplotlib? 2:23: Installing Jupyter through Anaconda 3:20: Launching Jupyter 3:41: DEMO begins: create a folder and download data 4:27: Create a new Jupyter Notebook file 5:09: Importing libraries 6:04: Simple examples of how to use Matplotlib / Pyplot 7:21: Plotting multiple lines 8:46: Importing data from a CSV file 10:46: Plotting data you’ve imported 13:19: Using a third argument in the plot() function 13:42: A real analysis with a real data set - loading data 14:49: Isolating the data for the U.S. and China 16:29: Plotting US and China’s population growth 18:22: Comparing relative growths instead of the absolute amount 21:21: About how to get more videos like this - it’s at https://www.csdojo.io/moredata
Views: 234997 CS Dojo
Logistic Regression in R | Machine Learning Algorithms | Data Science Training | Edureka
 
01:09:12
( Data Science Training - https://www.edureka.co/data-science ) This Logistic Regression Tutorial shall give you a clear understanding as to how a Logistic Regression machine learning algorithm works in R. Towards the end, in our demo we will be predicting which patients have diabetes using Logistic Regression! In this Logistic Regression Tutorial video you will understand: 1) The 5 Questions asked in Data Science 2) What is Regression? 3) Logistic Regression - What and Why? 4) How does Logistic Regression Work? 5) Demo in R: Diabetes Use Case 6) Logistic Regression: Use Cases Subscribe to our channel to get video updates. Hit the subscribe button above. Check our complete Data Science playlist here: https://goo.gl/60NJJS #LogisticRegression #Datasciencetutorial #Datasciencecourse #datascience How it Works? 1. There will be 30 hours of instructor-led interactive online classes, 40 hours of assignments and 20 hours of project 2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course. 3. You will get Lifetime Access to the recordings in the LMS. 4. At the end of the training you will have to complete the project based on which we will provide you a Verifiable Certificate! - - - - - - - - - - - - - - About the Course Edureka's Data Science course will cover the whole data life cycle ranging from Data Acquisition and Data Storage using R-Hadoop concepts, Applying modelling through R programming using Machine learning algorithms and illustrate impeccable Data Visualization by leveraging on 'R' capabilities. - - - - - - - - - - - - - - Why Learn Data Science? Data Science training certifies you with ‘in demand’ Big Data Technologies to help you grab the top paying Data Science job title with Big Data skills and expertise in R programming, Machine Learning and Hadoop framework. After the completion of the Data Science course, you should be able to: 1. Gain insight into the 'Roles' played by a Data Scientist 2. Analyse Big Data using R, Hadoop and Machine Learning 3. Understand the Data Analysis Life Cycle 4. Work with different data formats like XML, CSV and SAS, SPSS, etc. 5. Learn tools and techniques for data transformation 6. Understand Data Mining techniques and their implementation 7. Analyse data using machine learning algorithms in R 8. Work with Hadoop Mappers and Reducers to analyze data 9. Implement various Machine Learning Algorithms in Apache Mahout 10. Gain insight into data visualization and optimization techniques 11. Explore the parallel processing feature in R - - - - - - - - - - - - - - Who should go for this course? The course is designed for all those who want to learn machine learning techniques with implementation in R language, and wish to apply these techniques on Big Data. The following professionals can go for this course: 1. Developers aspiring to be a 'Data Scientist' 2. Analytics Managers who are leading a team of analysts 3. SAS/SPSS Professionals looking to gain understanding in Big Data Analytics 4. Business Analysts who want to understand Machine Learning (ML) Techniques 5. Information Architects who want to gain expertise in Predictive Analytics 6. 'R' professionals who want to captivate and analyze Big Data 7. Hadoop Professionals who want to learn R and ML techniques 8. Analysts wanting to understand Data Science methodologies For more information, Please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll free). Instagram: https://www.instagram.com/edureka_learning/ Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka Customer Reviews: Gnana Sekhar Vangara, Technology Lead at WellsFargo.com, says, "Edureka Data science course provided me a very good mixture of theoretical and practical training. The training course helped me in all areas that I was previously unclear about, especially concepts like Machine learning and Mahout. The training was very informative and practical. LMS pre recorded sessions and assignmemts were very good as there is a lot of information in them that will help me in my job. The trainer was able to explain difficult to understand subjects in simple terms. Edureka is my teaching GURU now...Thanks EDUREKA and all the best. "
Views: 85382 edureka!
Data Warehousing - An Overview
 
08:53
This video aims to give an overview of data warehousing. It does not delve into the detail - that is for later videos. Here, you will meet Bill Inmon and Ralph Kimball who created the concept and the commercialised it respectively. You then get a quick tour of the basic concepts used in data warehousing.
Views: 346059 Andy Wicks
Decision Tree Tutorial in 7 minutes with Decision Tree Analysis & Decision Tree Example (Basic)
 
07:00
Clicked here http://www.MBAbullshit.com/ and OMG wow! I'm SHOCKED how easy.. No wonder others goin crazy sharing this??? Share it with your other friends too! Fun MBAbullshit.com is filled with easy quick video tutorial reviews on topics for MBA, BBA, and business college students on lots of topics from Finance or Financial Management, Quantitative Analysis, Managerial Economics, Strategic Management, Accounting, and many others. Cut through the bullshit to understand MBA!(Coming soon!) http://www.youtube.com/watch?v=a5yWr1hr6QY
Views: 551353 MBAbullshitDotCom
Business Intelligence: Multidimensional Analysis
 
24:15
An introduction to multidimensional business intelligence and OnLine Analytical Processing (OLAP) suitable for both a technical and non-technical audience. Covers dimensions, attributes, measures, Key Performance Indicators (KPIs), aggregates, hierarchies, and data cubes. Downloadable slides available from SlideShare at http://goo.gl/4tIjVI
Views: 60108 Michael Lamont
Machine Learning Algorithms | Machine Learning Tutorial | Data Science Training | Edureka
 
45:16
( Data Science Training - https://www.edureka.co/data-science ) This Machine Learning Algorithms Tutorial shall teach you what machine learning is, and the various ways in which you can use machine learning to solve a problem! Towards the end, you will learn how to prepare a dataset for model creation and validation and how you can create a model using any machine learning algorithm! In this Machine Learning Algorithms Tutorial video you will understand: 1) What is an Algorithm? 2) What is Machine Learning? 3) How is a problem solved using Machine Learning? 4) Types of Machine Learning 5) Machine Learning Algorithms 6) Demo Subscribe to our channel to get video updates. Hit the subscribe button above. Check our complete Data Science playlist here: https://goo.gl/60NJJS #MachineLearningAlgorithms #Datasciencetutorial #Datasciencecourse #datascience How it Works? 1. There will be 30 hours of instructor-led interactive online classes, 40 hours of assignments and 20 hours of project 2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course. 3. You will get Lifetime Access to the recordings in the LMS. 4. At the end of the training you will have to complete the project based on which we will provide you a Verifiable Certificate! - - - - - - - - - - - - - - About the Course Edureka's Data Science course will cover the whole data life cycle ranging from Data Acquisition and Data Storage using R-Hadoop concepts, Applying modelling through R programming using Machine learning algorithms and illustrate impeccable Data Visualization by leveraging on 'R' capabilities. - - - - - - - - - - - - - - Why Learn Data Science? Data Science training certifies you with ‘in demand’ Big Data Technologies to help you grab the top paying Data Science job title with Big Data skills and expertise in R programming, Machine Learning and Hadoop framework. After the completion of the Data Science course, you should be able to: 1. Gain insight into the 'Roles' played by a Data Scientist 2. Analyse Big Data using R, Hadoop and Machine Learning 3. Understand the Data Analysis Life Cycle 4. Work with different data formats like XML, CSV and SAS, SPSS, etc. 5. Learn tools and techniques for data transformation 6. Understand Data Mining techniques and their implementation 7. Analyse data using machine learning algorithms in R 8. Work with Hadoop Mappers and Reducers to analyze data 9. Implement various Machine Learning Algorithms in Apache Mahout 10. Gain insight into data visualization and optimization techniques 11. Explore the parallel processing feature in R - - - - - - - - - - - - - - Who should go for this course? The course is designed for all those who want to learn machine learning techniques with implementation in R language, and wish to apply these techniques on Big Data. The following professionals can go for this course: 1. Developers aspiring to be a 'Data Scientist' 2. Analytics Managers who are leading a team of analysts 3. SAS/SPSS Professionals looking to gain understanding in Big Data Analytics 4. Business Analysts who want to understand Machine Learning (ML) Techniques 5. Information Architects who want to gain expertise in Predictive Analytics 6. 'R' professionals who want to captivate and analyze Big Data 7. Hadoop Professionals who want to learn R and ML techniques 8. Analysts wanting to understand Data Science methodologies For more information, Please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll free). Instagram: https://www.instagram.com/edureka_learning/ Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka Customer Reviews: Gnana Sekhar Vangara, Technology Lead at WellsFargo.com, says, "Edureka Data science course provided me a very good mixture of theoretical and practical training. The training course helped me in all areas that I was previously unclear about, especially concepts like Machine learning and Mahout. The training was very informative and practical. LMS pre recorded sessions and assignmemts were very good as there is a lot of information in them that will help me in my job. The trainer was able to explain difficult to understand subjects in simple terms. Edureka is my teaching GURU now...Thanks EDUREKA and all the best. "
Views: 166164 edureka!
Data Analyst Job Description | What 4 Skills Will You Need To Be A Data Analyst?
 
04:38
In this video we are going to define the job description of a data analyst, what a data analyst does, and the best online course to become a data analyst. ► Full Playlist Explaining Data Jargon ( http://bit.ly/2mB4G0N ) ► Top 4 Best Laptops for Data Analysts ( https://youtu.be/Vtk50Um_yxA ) ► Break Into the Data Industry with the best data analytics online learning resources from Edureka! ( http://bit.ly/2yCbsac ) --- affiliate link to help support this channel!^ Currently the average pay for a data analyst is $76,419 on the button, according to glassdoor I receive a lot of questions about what it takes to become a data analyst and what is a data analyst. Clearing up what a data analyst does everyday and what that description means to someone looking to enter the data science industry What will you actually be asked to do on the day to day as a data analyst. ► Top 4 Responsibilities in the Daily Life of a Data Analyst: 1 ) Mathematics Although mathematics only makes up about 20% of the day to day life of a data analyst. It is still important to have a strong understanding of the foundations of mathematics. - Addition - Subtraction - Multiplication - Division - Most Importantly --- Statistics Data analytics is all about statistics. Most of the statistics will be handled by the tools you are working with, but in order to be a great data analyst it is best to know why the tools are producing specific results. A strong understanding of statistics will be useful to you. 2 ) Computer Programming You must be able to work proficiently in one or more computer programming languages. This make up for roughly 60%-70% of your daily work. in order to analyze data it must be queried (drawn) from a large data warehouse. You will use computer programming languages such as SQL, Python, and R to query data. Before we move on let me define the term Query, if it does not resonate with you. You need strong computer programming skills in order to accomplish this task. As a data analyst you will do a lot of drawing and analyzing data. ► For more info on databases, SQL, and other jargon check out our Video Series on Data Jargon ( https://www.youtube.com/playlist?list=PL_9qmWdi19yDhnzqVCAhA4ALqDoqjeUOr ) 3 ) Know the Tools of the Trade Once you query data from the database onto your workspace you will begin to utilize data analytics tools to process, scrub, and analyze data (data Jargon explained on our Video series ^^^). You will be able to perform these tasks by using tools like Hadoop, Open Refine, Tableau, Apache Spark, etc... As you process the data you will begin to see connections between the data sets. You will see some of the following errors and you will want to remove these in order to ensure that your data analysis is accurate: - Duplicated data - Improperly formatted data - Incomplete data - Inaccurate data - This data will corrupt your findings and could possibly lose you client or employer millions of dollars. Make sure you know how to use those data analytics tools WELL! 4 ) Communicate and Present Insights Data Analyst will also be called upon to clearly and consciously present your research to clients, managers, or executives. Ok, now I know you are curious if you are capable of learning all of these crucial skills. Yes, you can, but there is a clause. You have to learn from the best. The guys over at Edureka.co are the leading professionals in the big data training industry. Based out of India, home to over 101,000 individuals in the data science industry (at the time of this writing). They are eager to make a way for themselves in the new digital economy. They are on the cutting edge of data analytics and eager to teach it to anyone worldwide. Testimonies of increased salaries, new employment, and 597,089 (updated) satisfied learners make edureka the best choice to learn the skills you need in the data industry. Question is will you actually do it. Imagine deregulating yourself for the data industry. Right now, it is a black hole, you don't know what's inside, but it is screaming opportunity from the darkness. TURN ON THE LIGHT and break into the data industry. A future proof opportunity for the next decade and beyond. ► Edureka Big Data Masters Program ( http://bit.ly/2yCbsac ) affiliate link^ ------- SOCIAL Twitter ► @jobsinthefuture Facebook ►/jobsinthefuture Instagram ►@Jobsinthefuture WHERE I LEARN: (affiliate links) Lynda.com ► http://bit.ly/2rQB2u4 edX.org ► http://fxo.co/4y00 MY FAVORITE GEAR: (affiliate links) Camera ► http://amzn.to/2BWvE9o CamStand ► http://amzn.to/2BWsv9M Computer ► http://amzn.to/2zPeLvs Mouse ► http://amzn.to/2C0T9hq TubeBuddy ► https://www.tubebuddy.com/bengkaiser ► Download the Ultimate Guide Now! ( https://www.getdrip.com/forms/883303253/submissions/new ) Thanks for Supporting Our Channel!
Views: 107022 Ben G Kaiser
Predicting Stock Prices - Learn Python for Data Science #4
 
07:39
In this video, we build an Apple Stock Prediction script in 40 lines of Python using the scikit-learn library and plot the graph using the matplotlib library. The challenge for this video is here: https://github.com/llSourcell/predicting_stock_prices Victor's winning recommender code: https://github.com/ciurana2016/recommender_system_py Kevin's runner-up code: https://github.com/Krewn/learner/blob/master/FieldPredictor.py#L62 I created a Slack channel for us, sign up here: https://wizards.herokuapp.com/ Stock prediction with Tensorflow: https://nicholastsmith.wordpress.com/2016/04/20/stock-market-prediction-using-multi-layer-perceptrons-with-tensorflow/ Another great stock prediction tutorial: http://eugenezhulenev.com/blog/2014/11/14/stock-price-prediction-with-big-data-and-machine-learning/ This guy made 500K doing ML stuff with stocks: http://jspauld.com/post/35126549635/how-i-made-500k-with-machine-learning-and-hft Please share this video, like, comment and subscribe! That's what keeps me going. and please support me on Patreon!: https://www.patreon.com/user?u=3191693 Check out this youtube channel for some more cool Python tutorials: https://www.youtube.com/watch?v=RZF17FfRIIo Follow me: Twitter: https://twitter.com/sirajraval Facebook: https://www.facebook.com/sirajology Instagram: https://www.instagram.com/sirajraval/ Instagram: https://www.instagram.com/sirajraval/ Signup for my newsletter for exciting updates in the field of AI: https://goo.gl/FZzJ5w Hit the Join button above to sign up to become a member of my channel for access to exclusive content!
Views: 548415 Siraj Raval
Excel Tutorial: What is Business Intelligence and an OLAP Cube? | ExcelCentral.com
 
10:18
This video lesson fully explains the concepts of Business Intelligence, OLAP, MDX and and how they apply to Excel 2013. At http://ExcelCentral.com you can view over 850 free Excel video lessons just like this one. All in full HD with vari-speed and human-transcribed subtitles providing the perfect Excel learning environment. You can also track your progress through the course and print a certificate upon completion. Separate videos are provided for Excel 2007, Excel 2010 and Excel 2013. The lesson begins with an explanation of OLAP and its purpose. You'll learn about OLAP Cubes and how they are divided into Dimensions, Measure and Hierarchies to create a multidimensional data structure. You'll also learn about how the MDX query language is used to extract values from OLAP cubes. This lesson also explains the concept of Business Intelligence and how it applies to OLAP. This video comes from the Data Model, OLAP, MDX and BI session (Session 6 in our Excel 2013 Expert Skills free video training course). This session includes the following video lessons: ▪ Lesson 6-1: Understand primary and foreign keys (11m 27s) http://excelcentral.com/excel2013/expert/lessons/06010-understand-primary-key-foreign-key-relationships.html ▪ Lesson 6-2: Create a simple data model (6m 31s) http://excelcentral.com/excel2013/expert/lessons/06020-create-a-simple-data-model.html ▪ Lesson 6-3: Understand OLAP, MDX and Business Intelligence (10m 17s) http://excelcentral.com/excel2013/expert/lessons/06030-what-is-business-intelligence-and-an-olap-cube.html ▪ Lesson 6-4: Use the GETPIVOTDATA function (4m 31s) http://excelcentral.com/excel2013/expert/lessons/06040-use-the-getpivotdata-function.html ▪ Lesson 6-5: Use the CUBEVALUE function to query an OLAP cube (5m 40s) http://excelcentral.com/excel2013/expert/lessons/06050-use-the-cubevalue-function-to-query-an-olap-cube.html ▪ Lesson 6-6: Convert CUBEVALUE functions to include MDX expressions (5m 48s) http://excelcentral.com/excel2013/expert/lessons/06060-convert-cubevalue-functions-to-include-mdx-expressions.html ▪ Lesson 6-7: Understand OLAP pivot table limitations (10m 52s) http://excelcentral.com/excel2013/expert/lessons/06070-understand-olap-pivot-table-limitations.html ▪ Lesson 6-8: Create an asymmetric OLAP pivot table using Named Sets (4m 57s) http://excelcentral.com/excel2013/expert/lessons/06080-create-an-asymmetric-olap-pivot-table-using-named-sets.html ▪ Lesson 6-9: Understand many-to-many relationships (11m 5s) http://excelcentral.com/excel2013/expert/lessons/06090-understand-many-to-many-relationships.html ▪ Lesson 6-10: Create an OLAP pivot table using a many-to-many relationship (12m 47s) http://excelcentral.com/excel2013/expert/lessons/06100-create-an-olap-pivot-table-using-a-many-to-many-relationship.html You can watch any of the 850 Excel video lessons, free and without any required registration at http://excelcentral.com/excel2013/expert/tutorials/default.html.
Views: 249255 ExcelCentral.com
Data Science for Business: Statistics for Data Mining - Part 1
 
06:46
You will learn about statistics in general and then specifically about descriptive statistics and how it can used to solve business problems. This is the first part of a 3-part video series. Part 2 can be found: https://www.youtube.com/watch?v=J9L0gWDO4lM This video was created by Cognitir (formerly Import Classes). Cognitir is a global company that provides live training courses to business & finance professionals globally to help them acquire in-demand tech skills. For additional free resources and information about training courses, please visit: www.cognitir.com
Views: 383 Cognitir
Understanding Confidence Intervals: Statistics Help
 
04:02
This short video gives an explanation of the concept of confidence intervals, with helpful diagrams and examples. Find out more on Statistics Learning Centre: http://statslc.com or to see more of our videos: https://wp.me/p24HeL-u6
Views: 748612 Dr Nic's Maths and Stats
Types of Data: Nominal, Ordinal, Interval/Ratio - Statistics Help
 
06:20
The kind of graph and analysis we can do with specific data is related to the type of data it is. In this video we explain the different levels of data, with examples. Subtitles in English and Spanish.
Views: 879229 Dr Nic's Maths and Stats
Data Analytics for Beginners | Introduction to Data Analytics | Data Analytics Tutorial
 
01:27:18
Data Analytics for Beginners -Introduction to Data Analytics https://acadgild.com/big-data/data-analytics-training-certification?utm_campaign=enrol-data-analytics-beginners-THODdNXOjRw&utm_medium=VM&utm_source=youtube Hello and Welcome to data analytics tutorial conducted by ACADGILD. It’s an interactive online tutorial. Here are the topics covered in this training video: • Data Analysis and Interpretation • Why do I need an Analysis Plan? • Key components of a Data Analysis Plan • Analyzing and Interpreting Quantitative Data • Analyzing Survey Data • What is Business Analytics? • Application and Industry facts • Importance of Business analytics • Types of Analytics & examples • Data for Business Analytics • Understanding Data Types • Categorical Variables • Data Coding • Coding Systems • Coding, coding tip • Data Cleaning • Univariate Data Analysis • Statistics Describing a continuous variable distribution • Standard deviation • Distribution and percentiles • Analysis of categorical data • Observed Vs Expected Distribution • Identifying and solving business use cases • Recognizing, defining, structuring and analyzing the problem • Interpreting results and making the decision • Case Study Get started with Data Analytics with this tutorial. Happy Learning For more updates on courses and tips follow us on: Facebook: https://www.facebook.com/acadgild Twitter: https://twitter.com/acadgild LinkedIn: https://www.linkedin.com/company/acadgild
Views: 252600 ACADGILD
What is OLAP?
 
05:05
This video explores some of OLAP's history, and where this solution might be applicable. We also look at situations where OLAP might not be a fit. Additionally, we investigate an alternative/complement called a Relational Dimensional Model. To Talk with a Specialist go to: http://www.intricity.com/intricity101/
Views: 372492 Intricity101
Types of Sampling Methods (4.1)
 
04:50
Get access to practice questions, written summaries, and homework help on our website! http://wwww.simplelearningpro.com Follow us on Instagram http://www.instagram.com/simplelearningpro Like us on Facebook http://www.facebook.com/simplelearningpro Follow us on Twitter http://www.twitter.com/simplelearningp If you found this video helpful, please subscribe, share it with your friends and give this video a thumbs up!
Views: 297189 Simple Learning Pro
How KNN algrorithm works with example : K - Nearest Neighbor
 
08:33
How KNN algorithm works with example: K - Nearest Neighbor, Classifiers, Data Mining, Knowledge Discovery, Data Analytics
Views: 126069 shreyans jain
Relational Database Concepts
 
05:25
Basic Concepts on how relational databases work. Explains the concepts of tables, key IDs, and relations at an introductory level. For more info on Crow's Feet Notation: http://prescottcomputerguy.com/tmp/crows-foot.png
Views: 585216 Prescott Computer Guy
Range, variance and standard deviation as measures of dispersion | Khan Academy
 
12:34
Practice this lesson yourself on KhanAcademy.org right now: https://www.khanacademy.org/math/probability/descriptive-statistics/variance_std_deviation/e/variance?utm_source=YT&utm_medium=Desc&utm_campaign=ProbabilityandStatistics Watch the next lesson: https://www.khanacademy.org/math/probability/descriptive-statistics/variance_std_deviation/v/variance-of-a-population?utm_source=YT&utm_medium=Desc&utm_campaign=ProbabilityandStatistics Missed the previous lesson? https://www.khanacademy.org/math/probability/descriptive-statistics/box-and-whisker-plots/v/range-and-mid-range?utm_source=YT&utm_medium=Desc&utm_campaign=ProbabilityandStatistics Probability and statistics on Khan Academy: We dare you to go through a day in which you never consider or use probability. Did you check the weather forecast? Busted! Did you decide to go through the drive through lane vs walk in? Busted again! We are constantly creating hypotheses, making predictions, testing, and analyzing. Our lives are full of probabilities! Statistics is related to probability because much of the data we use when determining probable outcomes comes from our understanding of statistics. In these tutorials, we will cover a range of topics, some which include: independent events, dependent probability, combinatorics, hypothesis testing, descriptive statistics, random variables, probability distributions, regression, and inferential statistics. So buckle up and hop on for a wild ride. We bet you're going to be challenged AND love it! About Khan Academy: Khan Academy offers practice exercises, instructional videos, and a personalized learning dashboard that empower learners to study at their own pace in and outside of the classroom. We tackle math, science, computer programming, history, art history, economics, and more. Our math missions guide learners from kindergarten to calculus using state-of-the-art, adaptive technology that identifies strengths and learning gaps. We've also partnered with institutions like NASA, The Museum of Modern Art, The California Academy of Sciences, and MIT to offer specialized content. For free. For everyone. Forever. #YouCanLearnAnything Subscribe to KhanAcademy’s Probability and Statistics channel: https://www.youtube.com/channel/UCRXuOXLW3LcQLWvxbZiIZ0w?sub_confirmation=1 Subscribe to KhanAcademy: https://www.youtube.com/subscription_center?add_user=khanacademy
Views: 1283813 Khan Academy
Big Data Tools and Technologies | Big Data Tools Tutorial | Big Data Training | Simplilearn
 
06:58
This Big Data Tools Tutorial will explain what is Big Data?, Big Data challenges and some of the popular Big Data tools involed in Big Data processing and management. The main challenge of Big Data is storing and processing the data at a specified time span. The traditional approach is not efficient in doing that. So Hadoop technologies and various Big Data tools have emerged to solve the challenges in Big Data environment. There are a lot of Big Data tools, all of them help in some or the other way in saving time, money and in covering business insights. This video will talk about such tools used in Big Data management. Subscribe to Simplilearn channel for more Big Data and Hadoop Tutorials - https://www.youtube.com/user/Simplilearn?sub_confirmation=1 Check our Big Data Training Video Playlist: https://www.youtube.com/playlist?list=PLEiEAq2VkUUJqp1k-g5W1mo37urJQOdCZ Big Data and Analytics Articles - https://www.simplilearn.com/resources/big-data-and-analytics?utm_campaign=BigData-Tools-Tutorial-Pyo4RWtxsQM&utm_medium=Tutorials&utm_source=youtube To gain in-depth knowledge of Big Data and Hadoop, check our Big Data Hadoop and Spark Developer Certification Training Course: https://www.simplilearn.com/big-data-and-analytics/big-data-and-hadoop-training?utm_campaign=BigData-Tools-Tutorial-Pyo4RWtxsQM&utm_medium=Tutorials&utm_source=youtube #bigdata #bigdatatutorialforbeginners #bigdataanalytics #bigdatahadooptutorialforbeginners #bigdatacertification #HadoopTutorial - - - - - - - - - About Simplilearn's Big Data and Hadoop Certification Training Course: The Big Data Hadoop and Spark developer course have been designed to impart an in-depth knowledge of Big Data processing using Hadoop and Spark. The course is packed with real-life projects and case studies to be executed in the CloudLab. Mastering real-time data processing using Spark: You will learn to do functional programming in Spark, implement Spark applications, understand parallel processing in Spark, and use Spark RDD optimization techniques. You will also learn the various interactive algorithm in Spark and use Spark SQL for creating, transforming, and querying data form. As a part of the course, you will be required to execute real-life industry-based projects using CloudLab. The projects included are in the domains of Banking, Telecommunication, Social media, Insurance, and E-commerce. This Big Data course also prepares you for the Cloudera CCA175 certification. - - - - - - - - What are the course objectives of this Big Data and Hadoop Certification Training Course? This course will enable you to: 1. Understand the different components of Hadoop ecosystem such as Hadoop 2.7, Yarn, MapReduce, Pig, Hive, Impala, HBase, Sqoop, Flume, and Apache Spark 2. Understand Hadoop Distributed File System (HDFS) and YARN as well as their architecture, and learn how to work with them for storage and resource management 3. Understand MapReduce and its characteristics, and assimilate some advanced MapReduce concepts 4. Get an overview of Sqoop and Flume and describe how to ingest data using them 5. Create database and tables in Hive and Impala, understand HBase, and use Hive and Impala for partitioning 6. Understand different types of file formats, Avro Schema, using Arvo with Hive, and Sqoop and Schema evolution 7. Understand Flume, Flume architecture, sources, flume sinks, channels, and flume configurations 8. Understand HBase, its architecture, data storage, and working with HBase. You will also understand the difference between HBase and RDBMS 9. Gain a working knowledge of Pig and its components 10. Do functional programming in Spark 11. Understand resilient distribution datasets (RDD) in detail 12. Implement and build Spark applications 13. Gain an in-depth understanding of parallel processing in Spark and Spark RDD optimization techniques 14. Understand the common use-cases of Spark and the various interactive algorithms 15. Learn Spark SQL, creating, transforming, and querying Data frames - - - - - - - - - - - Who should take up this Big Data and Hadoop Certification Training Course? Big Data career opportunities are on the rise, and Hadoop is quickly becoming a must-know technology for the following professionals: 1. Software Developers and Architects 2. Analytics Professionals 3. Senior IT professionals 4. Testing and Mainframe professionals 5. Data Management Professionals 6. Business Intelligence Professionals 7. Project Managers 8. Aspiring Data Scientists - - - - - - - - For more updates on courses and tips follow us on: - Facebook : https://www.facebook.com/Simplilearn - Twitter: https://twitter.com/simplilearn - LinkedIn: https://www.linkedin.com/company/simplilearn - Website: https://www.simplilearn.com Get the android app: http://bit.ly/1WlVo4u Get the iOS app: http://apple.co/1HIO5J0
Views: 12910 Simplilearn
Covariance and Correlation Coefficient Video
 
07:01
Video for finding the covariance and correlation coefficient by hand.
Views: 139200 Kevin Brown
Scales of Measurement - Nominal, Ordinal, Interval, Ratio (Part 1) - Introductory Statistics
 
05:52
This video reviews the scales of measurement covered in introductory statistics: nominal, ordinal, interval, and ratio (Part 1 of 2). Scales of Measurement Nominal, Ordinal, Interval, Ratio YouTube Channel: https://www.youtube.com/user/statisticsinstructor Subscribe today! Lifetime access to SPSS videos: http://tinyurl.com/m2532td Video Transcript: In this video we'll take a look at what are known as the scales of measurement. OK first of all measurement can be defined as the process of applying numbers to objects according to a set of rules. So when we measure something we apply numbers or we give numbers to something and this something is just generically an object or objects so we're assigning numbers to some thing or things and when we do that we follow some sort of rules. Now in terms of introductory statistics textbooks there are four scales of measurement nominal, ordinal, interval, and ratio. We'll take a look at each of these in turn and take a look at some examples as well, as the examples really help to differentiate between these four scales. First we'll take a look at nominal. Now in a nominal scale of measurement we assign numbers to objects where the different numbers indicate different objects. The numbers have no real meaning other than differentiating between objects. So as an example a very common variable in statistical analyses is gender where in this example all males get a 1 and all females get a 2. Now the reason why this is nominal is because we could have just as easily assigned females a 1 and males a 2 or we could have assigned females 500 and males 650. It doesn't matter what number we come up with as long as all males get the same number, 1 in this example, and all females get the same number, 2. It doesn't mean that because females have a higher number that they're better than males or males are worse than females or vice versa or anything like that. All it does is it differentiates between our two groups. And that's a classic nominal example. Another one is baseball uniform numbers. Now the number that a player has on their uniform in baseball it provides no insight into the player's position or anything like that it just simply differentiates between players. So if someone has the number 23 on their back and someone has the number 25 it doesn't mean that the person who has 25 is better, has a higher average, hits more home runs, or anything like that it just means they're not the same playeras number 23. So in this example its nominal once again because the number just simply differentiates between objects. Now just as a side note in all sports it's not the same like in football for example different sequences of numbers typically go towards different positions. Like linebackers will have numbers that are different than quarterbacks and so forth but that's not the case in baseball. So in baseball whatever the number is it provides typically no insight into what position he plays. OK next we have ordinal and for ordinal we assign numbers to objects just like nominal but here the numbers also have meaningful order. So for example the place someone finishes in a race first, second, third, and so on. If we know the place that they finished we know how they did relative to others. So for example the first place person did better than second, second did better than third, and so on of course right that's obvious but that number that they're assigned one, two, or three indicates how they finished in a race so it indicates order and same thing with the place finished in an election first, second, third, fourth we know exactly how they did in relation to the others the person who finished in third place did better than someone who finished in fifth let's say if there are that many people, first did better than third and so on. So the number for ordinal once again indicates placement or order so we can rank people with ordinal data. OK next we have interval. In interval numbers have order just like ordinal so you can see here how these scales of measurement build on one another but in addition to ordinal, interval also has equal intervals between adjacent categories and I'll show you what I mean here with an example. So if we take temperature in degrees Fahrenheit the difference between 78 degrees and 79 degrees or that one degree difference is the same as the difference between 45 degrees and 46 degrees. One degree difference once again. So anywhere along that scale up and down the Fahrenheit scale that one degree difference means the same thing all up and down that scale. OK so if we take eight degrees versus nine degrees the difference there is one degree once again. That's a classic interval scale right there with those differences are meaningful and we'll contrast this with ordinal in just a few moments but finally before we do let's take a look at ratio.
Views: 357064 Quantitative Specialists
Data Science Methodology 101 - Data Understanding Concepts and Case Study
 
03:24
Enroll in the course for free at: https://bigdatauniversity.com/courses/data-science-methodology-2/ Data Science Methodology Grab you lab coat, beakers, and pocket calculator…wait what? wrong path! Fast forward and get in line with emerging data science methodologies that are in use and are making waves or rather predicting and determining which wave is coming and which one has just passed. Connect with Big Data University: https://www.facebook.com/bigdatauniversity https://twitter.com/bigdatau https://www.linkedin.com/groups/4060416/profile ABOUT THIS COURSE •This course is free. •It is self-paced. •It can be taken at any time. •It can be audited as many times as you wish. Learn the major steps involved in tackling a data science problem. Learn the major steps involved in practicing data science, with interesting real-world examples at each step: from forming a concrete business or research problem, to collecting and analyzing data, to building a model, and understanding the feedback after model deployment. https://bigdatauniversity.com/courses/data-science-methodology-2/
Views: 6387 Cognitive Class
How to Make an Analytics Startup Successful
 
01:26:55
David Hornik, General Partner, August Capital, discussed how he has helped tech companies become success stories as an investor in companies like Evite, Splunk, and WePay. Hornik's talk was sponsored by the Center for Pricing and Revenue Management at Columbia Business School.
Excel Data Analysis: Sort, Filter, PivotTable, Formulas (25 Examples): HCC Professional Day 2012
 
55:13
Download workbook: http://people.highline.edu/mgirvin/ExcelIsFun.htm Learn the basics of Data Analysis at Highline Community College Professional Development Day 2012: Topics in Video: 1. What is Data Analysis? ( 00:53 min mark) 2. How Data Must Be Setup ( 02:53 min mark) Sort: 3. Sort with 1 criteria ( 04:35 min mark) 4. Sort with 2 criteria or more ( 06:27 min mark) 5. Sort by color ( 10:01 min mark) Filter: 6. Filter with 1 criteria ( 11:26 min mark) 7. Filter with 2 criteria or more ( 15:14 min mark) 8. Filter by color ( 16:28 min mark) 9. Filter Text, Numbers, Dates ( 16:50 min mark) 10. Filter by Partial Text ( 20:16 min mark) Pivot Tables: 11. What is a PivotTable? ( 21:05 min mark) 12. Easy 3 step method, Cross Tabulation ( 23:07 min mark) 13. Change the calculation ( 26:52 min mark) 14. More than one calculation ( 28:45 min mark) 15. Value Field Settings (32:36 min mark) 16. Grouping Numbers ( 33:24 min mark) 17. Filter in a Pivot Table ( 35:45 min mark) 18. Slicers ( 37:09 min mark) Charts: 19. Column Charts from Pivot Tables ( 38:37 min mark) Formulas: 20. SUMIFS ( 42:17 min mark) 21. Data Analysis Formula or PivotTables? ( 45:11 min mark) 22. COUNTIF ( 46:12 min mark) 23. Formula to Compare Two Lists: ISNA and MATCH functions ( 47:00 min mark) Getting Data Into Excel 24. Import from CSV file ( 51:21 min mark) 25. Import from Access ( 54:00 min mark) Highline Community College Professional Development Day 2012 Buy excelisfun products: https://teespring.com/stores/excelisfun-store
Views: 1552967 ExcelIsFun
Balanced Scorecard
 
04:00
A visual summary explaining the Balanced Scorecard is and how it relates to business. Published by http://www.intrafocus.com
Views: 520696 IntrafocusUK
Synergent: The Power of Data Mining
 
00:16
Synergent uses your data to meet your campaign goals and improve the financial lives of your members.
Views: 5087 SynergentCorp
What Is Data Science? Data Science Course - Data Science Tutorial For Beginners | Edureka
 
01:03:05
( Data Science Training - https://www.edureka.co/data-science ) This Edureka Data Science course video (Data Science Blog Series: https://goo.gl/yGjZfs) will take you through the need of data science, what is data science, data science use cases for business, BI vs data science, data analytics tools, data science lifecycle along with a demo. This Data Science tutorial video is ideal for beginners to learn data science and machine learning basics. You can read the blog here: https://goo.gl/lYb5Lb Subscribe to our channel to get video updates. Hit the subscribe button above. Check our complete Data Science playlist here: https://goo.gl/60NJJS #whatisdatascience #Datasciencetutorial #Datasciencecourse #datascience How it Works? 1. There will be 30 hours of instructor-led interactive online classes, 40 hours of assignments and 20 hours of project 2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course. 3. You will get Lifetime Access to the recordings in the LMS. 4. At the end of the training you will have to complete the project based on which we will provide you a Verifiable Certificate! - - - - - - - - - - - - - - About the Course Edureka's Data Science course will cover the whole data life cycle ranging from Data Acquisition and Data Storage using R-Hadoop concepts, Applying modelling through R programming using Machine learning algorithms and illustrate impeccable Data Visualization by leveraging on 'R' capabilities. - - - - - - - - - - - - - - Why Learn Data Science? Data Science training certifies you with ‘in demand’ Big Data Technologies to help you grab the top paying Data Science job title with Big Data skills and expertise in R programming, Machine Learning and Hadoop framework. After the completion of the Data Science course, you should be able to: 1. Gain insight into the 'Roles' played by a Data Scientist 2. Analyse Big Data using R, Hadoop and Machine Learning 3. Understand the Data Analysis Life Cycle 4. Work with different data formats like XML, CSV and SAS, SPSS, etc. 5. Learn tools and techniques for data transformation 6. Understand Data Mining techniques and their implementation 7. Analyse data using machine learning algorithms in R 8. Work with Hadoop Mappers and Reducers to analyze data 9. Implement various Machine Learning Algorithms in Apache Mahout 10. Gain insight into data visualization and optimization techniques 11. Explore the parallel processing feature in R - - - - - - - - - - - - - - Who should go for this course? The course is designed for all those who want to learn machine learning techniques with implementation in R language, and wish to apply these techniques on Big Data. The following professionals can go for this course: 1. Developers aspiring to be a 'Data Scientist' 2. Analytics Managers who are leading a team of analysts 3. SAS/SPSS Professionals looking to gain understanding in Big Data Analytics 4. Business Analysts who want to understand Machine Learning (ML) Techniques 5. Information Architects who want to gain expertise in Predictive Analytics 6. 'R' professionals who want to captivate and analyze Big Data 7. Hadoop Professionals who want to learn R and ML techniques 8. Analysts wanting to understand Data Science methodologies For more information, Please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll free). Instagram: https://www.instagram.com/edureka_learning/ Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka Customer Reviews: Gnana Sekhar Vangara, Technology Lead at WellsFargo.com, says, "Edureka Data science course provided me a very good mixture of theoretical and practical training. The training course helped me in all areas that I was previously unclear about, especially concepts like Machine learning and Mahout. The training was very informative and practical. LMS pre recorded sessions and assignmemts were very good as there is a lot of information in them that will help me in my job. The trainer was able to explain difficult to understand subjects in simple terms. Edureka is my teaching GURU now...Thanks EDUREKA and all the best. "
Views: 190341 edureka!
Data Science Tutorial | Data Science for Beginners | Data Science with Python Tutorial | Simplilearn
 
43:55
This Data Science Tutorial will help you understand what is Data Science, who is a Data Scientist, what does a Data Scientist do and also how Python is used for Data Science. Data science is an interdisciplinary field of scientific methods, processes, algorithms and systems to extract knowledge or insights from data in various forms, either structured or unstructured, similar to data mining. This Data Science tutorial will help you establish your skills at analytical techniques using Python. With this Data Science video, you’ll learn the essential concepts of Data Science with Python programming and also understand how data acquisition, data preparation, data mining, model building & testing, data visualization is done. This Data Science tutorial is ideal for beginners who aspire to become a Data Scientist. This Data Science tutorial will cover the following topics: 1. What is Data Science? ( 00:43 ) 2. Who is a Data Scientist? ( 02:02 ) 3. What does a Data Scientist do? ( 02:25 ) To learn more about Data Science, subscribe to our YouTube channel: https://www.youtube.com/user/Simplilearn?sub_confirmation=1 You can also go through the slides here: https://goo.gl/V4Zn8i Read the full article here: https://www.simplilearn.com/career-in-data-science-ultimate-guide-article?utm_campaign=What-is-Data-Science-bTTxei-S1WI&utm_medium=Tutorials&utm_source=youtube Watch more videos on Data Science: https://www.youtube.com/watch?v=0gf5iLTbiQM&list=PLEiEAq2VkUUIEQ7ENKU5Gv0HpRDtOphC6 #DataScienceWithPython #DataScienceWithR #DataScienceCourse #DataScience #DataScientist #BusinessAnalytics #MachineLearning This Data Science with Python course will establish your mastery of data science and analytics techniques using Python. With this Python for Data Science Course, you’ll learn the essential concepts of Python programming and become an expert in data analytics, machine learning, data visualization, web scraping and natural language processing. Python is a required skill for many data science positions, so jumpstart your career with this interactive, hands-on course. Why learn Data Science? Data Scientists are being deployed in all kinds of industries, creating a huge demand for skilled professionals. A data scientist is the pinnacle rank in an analytics organization. Glassdoor has ranked data scientist first in the 25 Best Jobs for 2016, and good data scientists are scarce and in great demand. As a data you will be required to understand the business problem, design the analysis, collect and format the required data, apply algorithms or techniques using the correct tools, and finally make recommendations backed by data. You can gain in-depth knowledge of Data Science by taking our Data Science with python certification training course. With Simplilearn’s Data Science certification training course, you will prepare for a career as a Data Scientist as you master all the concepts and techniques. Those who complete the course will be able to: 1. Gain an in-depth understanding of data science processes, data wrangling, data exploration, data visualization, hypothesis building, and testing. You will also learn the basics of statistics. Install the required Python environment and other auxiliary tools and libraries 2. Understand the essential concepts of Python programming such as data types, tuples, lists, dicts, basic operators and functions 3. Perform high-level mathematical computing using the NumPy package and its large library of mathematical functions Perform scientific and technical computing using the SciPy package and its sub-packages such as Integrate, Optimize, Statistics, IO and Weave 4. Perform data analysis and manipulation using data structures and tools provided in the Pandas package 5. Gain expertise in machine learning using the Scikit-Learn package The Data Science with python is recommended for: 1. Analytics professionals who want to work with Python 2. Software professionals looking to get into the field of analytics 3. IT professionals interested in pursuing a career in analytics 4. Graduates looking to build a career in analytics and data science 5. Experienced professionals who would like to harness data science in their fields Learn more at: https://www.simplilearn.com/big-data-and-analytics/python-for-data-science-training?utm_campaign=What-is-Data-Science-bTTxei-Data-Sciene-Tutorial-jNeUBWrrRsQ&utm_medium=Tutorials&utm_source=youtube For more information about Simplilearn’s courses, visit: - Facebook: https://www.facebook.com/Simplilearn - Twitter: https://twitter.com/simplilearn - LinkedIn: https://www.linkedin.com/company/simp... - Website: https://www.simplilearn.com Get the Android app: http://bit.ly/1WlVo4u Get the iOS app: http://apple.co/1HIO5J0
Views: 36247 Simplilearn
Data Mining: How You're Revealing More Than You Think
 
11:13
Data mining recently made big news with the Cambridge Analytica scandal, but it is not just for ads and politics. It can help doctors spot fatal infections and it can even predict massacres in the Congo. Hosted by: Stefan Chin Head to https://scishowfinds.com/ for hand selected artifacts of the universe! ---------- Support SciShow by becoming a patron on Patreon: https://www.patreon.com/scishow ---------- Dooblydoo thanks go to the following Patreon supporters: Lazarus G, Sam Lutfi, Nicholas Smith, D.A. Noe, سلطان الخليفي, Piya Shedden, KatieMarie Magnone, Scott Satovsky Jr, Charles Southerland, Patrick D. Ashmore, Tim Curwick, charles george, Kevin Bealer, Chris Peters ---------- Looking for SciShow elsewhere on the internet? Facebook: http://www.facebook.com/scishow Twitter: http://www.twitter.com/scishow Tumblr: http://scishow.tumblr.com Instagram: http://instagram.com/thescishow ---------- Sources: https://www.aaai.org/ojs/index.php/aimagazine/article/viewArticle/1230 https://www.theregister.co.uk/2006/08/15/beer_diapers/ https://www.theatlantic.com/technology/archive/2012/04/everything-you-wanted-to-know-about-data-mining-but-were-afraid-to-ask/255388/ https://www.economist.com/node/15557465 https://blogs.scientificamerican.com/guest-blog/9-bizarre-and-surprising-insights-from-data-science/ https://qz.com/584287/data-scientists-keep-forgetting-the-one-rule-every-researcher-should-know-by-heart/ https://www.amazon.com/Predictive-Analytics-Power-Predict-Click/dp/1118356853 http://dml.cs.byu.edu/~cgc/docs/mldm_tools/Reading/DMSuccessStories.html http://content.time.com/time/magazine/article/0,9171,2058205,00.html https://www.nytimes.com/2012/02/19/magazine/shopping-habits.html?pagewanted=all&_r=0 https://www2.deloitte.com/content/dam/Deloitte/de/Documents/deloitte-analytics/Deloitte_Predictive-Maintenance_PositionPaper.pdf https://www.cs.helsinki.fi/u/htoivone/pubs/advances.pdf http://cecs.louisville.edu/datamining/PDF/0471228524.pdf https://bits.blogs.nytimes.com/2012/03/28/bizarre-insights-from-big-data https://scholar.harvard.edu/files/todd_rogers/files/political_campaigns_and_big_data_0.pdf https://insights.spotify.com/us/2015/09/30/50-strangest-genre-names/ https://www.theguardian.com/news/2005/jan/12/food.foodanddrink1 https://adexchanger.com/data-exchanges/real-world-data-science-how-ebay-and-placed-put-theory-into-practice/ https://www.theverge.com/2015/9/30/9416579/spotify-discover-weekly-online-music-curation-interview http://blog.galvanize.com/spotify-discover-weekly-data-science/ Audio Source: https://freesound.org/people/makosan/sounds/135191/ Image Source: https://commons.wikimedia.org/wiki/File:Swiss_average.png
Views: 147269 SciShow
Data Mining and Business Intelligence for Cyber Security Applications Summer Program at BGU
 
01:38
The purpose of the Summer Program in Data Mining and Business Intelligence is to provide both theoretical and practical knowledge, including tools, on data mining. The program offers two academic courses (each for 3 credits), where students learn the basic tools of data mining and the utilization of machine learning techniques for solving cyber security problems. The program includes a mandatory one week internship at BGU’s Cyber Security Research Center. The internship corresponds with the course materials and contributes the practical experience component. In addition, students will take part in professional fieldtrips to leading companies, in order to enhance their understanding of data mining and cyber security To Apply: https://www.tfaforms.com/399172 For More information: www.bgu.ac.il/global
Views: 1318 BenGurionUniversity